RESUMO
Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.
Assuntos
Carcinogênese , Rearranjo Gênico , Janus Quinases , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Neoplasias , Fatores de Transcrição STAT , Fatores de Transcrição , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células U937RESUMO
The use of conventional fabrication methods rapidly developed the performance and notable enhancements of optoelectronic devices. However, it proved challenging to develop and demonstrate stable optoelectronic devices with biodegradability and biocompatibility properties towards sustainable development and extensive applications. This study incorporates a water-soluble Cr-phycoerythrin (Cr-PE) biomaterial to observe its optical and electronic properties effects on the pristine indium gallium zinc oxide (IGZO)-based photodetector. The fabricated photodetector demonstrates an extended absorption detection region, enhanced optoelectronic performance, and switchable function properties. The resulting photocurrent and responsivity of the IGZO/Cr-PE structure have increased by 5.7 and 7.1 times as compared to the pristine IGZO photodetector. It was also observed that the photodetector could operate in UV and UV-visible with enhanced optical properties by effectively adding the water-soluble Cr-PE. Also, the sensing region of IGZO photodetector becomes changeable. It exhibits switchable dual detection by alternatively dripping and removing the Cr-PE on the IGZO layer. Different measurement parameters such as detectivity, repeatability, and sensitivity are highlighted to effectively prove the advantage of including Cr-PE on the photodetector structure. This study contributes to understanding the potential functions in improving optoelectronic devices through an environmental-friendly method.
Assuntos
Gálio , Índio , Materiais Biocompatíveis , Gálio/química , Índio/química , Água , ZincoRESUMO
The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme ß1,3-galactosyltransferase V (ß3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of ß3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of ß3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.
Assuntos
Neoplasias da Mama/genética , Galactosiltransferases/genética , Glicoesfingolipídeos/genética , Microdomínios da Membrana/genética , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/metabolismo , Apoptose/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Progressão da Doença , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/genética , Glicoesfingolipídeos/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Microdomínios da Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/genética , Saporinas/genética , Transdução de Sinais/genética , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismoRESUMO
Objective To explore the effects of interleukin-6 (IL-6) gene knockout on the cognitive function and pathological changes in 5×FAD transgenic mice of Alzheimer's disease.Methods IL-6+/- mice were crossed with 5×FAD mice to establish the 5×FAD;IL-6-/- mouse model,and 3-month-old and 10-month-old mice were selected for experiments.The cognitive function of mice was detected by behavioral tests,and HE staining and ß-amyloid (Aß) immunohistochemical staining were performed to detect the pathological changes of mouse brain tissue.Results The number of 5×FAD;IL-6-/- model mice (3 months old,n=20;10 months old,n=5) and 5×FAD littermate control (3 months old,n=26;10 months old,n=24) conformed to the Mendel's law.Compared with that of the 5×FAD mice at the same age,the discrimination ratio of 3-month-old 5×FAD;IL-6-/- mice increased in the novel object recognition test (q=3.890,P=0.002).Morris water maze test results showed that the 3-month-old 5×FAD;IL-6-/- mice had longer time spent in target quadrant (q=3.797,P=0.012) and more times of crossing platform (q=2.505,P=0.017) than the 5×FAD mice at the same age.The results of immunohistochemical staining showed that IL-6 knockout reduced the Aß deposition in the hippocampus (q=13.490,P=0.002;q=45.680,P<0.001) and cortex (q=16.830,P=0.001;q=14.180,P=0.001) of 5×FAD mice.Conclusion IL-6 gene knockout can significantly improve the spatial memory and reduce the Aß deposition in the brain of 5×FAD mice.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Animais , Cognição , Modelos Animais de Doenças , Flavina-Adenina Dinucleotídeo , Técnicas de Inativação de Genes , Interleucina-6 , Camundongos , Camundongos KnockoutRESUMO
We have shown that glycosylation of influenza A virus (IAV) hemagglutinin (HA), especially at position N-27, is crucial for HA folding and virus survival. However, it is not known whether the glycosylation of HA and the other two major IAV surface glycoproteins, neuraminidase (NA) and M2 ion channel, is essential for the replication of IAV. Here, we show that glycosylation of HA at N-142 modulates virus infectivity and host immune response. Glycosylation of NA in the stalk region affects its structure, activity, and specificity, thereby modulating virus release and virulence, and glycosylation at the catalytic domain affects its thermostability; however, glycosylation of M2 had no effect on its function. In addition, using IAV without the stalk and catalytic domains of NA as a live attenuated vaccine was shown to confer a strong IAV-specific CD8+ T-cell response and a strong cross-strain as well as cross-subtype protection against various virus strains.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Células A549 , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Proteção Cruzada/imunologia , Cães , Feminino , Células HEK293 , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Virulência/imunologiaRESUMO
PT-peptide is derived from the anti-lipopolysaccharide factor of the swimming crab Portunus trituberculatus. The peptide, consisting of 34 amino acids, contains a lipopolysaccharide binding domain. In this study, we investigated the effect of PT-peptide encapsulated in raw milk-derived extracellular vesicles (EVs), designated as EVs-PT peptide, on immune regulation. The results showed that raw milk-derived EVs efficaciously delivered the PT-peptide into monocytes and elevated immune activity, including reactive oxygen species level, superoxide anion production, and phagocytosis. PT-peptide and EVs-PT peptide also elevated the secretion of cytokines, such as interferon-γ, interleukin-6, and tumor necrosis factor-α in human monocytic THP-1 cells. These results suggest that the PT-peptide could be developed as an immune stimulator.
Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Proteínas de Artrópodes/administração & dosagem , Braquiúros , Sistemas de Liberação de Medicamentos/métodos , Monócitos/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Composição de Medicamentos/métodos , Vesículas Extracelulares/química , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/metabolismo , Leite/química , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
A 150 m/280 Gbps free-space optical (FSO) link based on an optoelectronic oscillator (OEO)-based broadband light source (BLS), afocal telescopes, and wavelength-division-multiplexing (WDM)/space-division-multiplexing (SDM) convergence is proposed. Experimental results show that the transmission distance of FSO links is significantly increased by afocal telescopes, and the transmission rate of FSO links is greatly enhanced by WDM and SDM convergence. With the aid of a low noise amplifier and clock/data recovery, good bit error rate performance and a clear eye diagram are achieved at 150 m/280 Gbps operation. This proposed 150 m/280 Gbps WDM/SDM FSO link is shown to be a prominent alternative not only because of its advancement of indoor FSO communications but also because of the advantages of optical wireless communications for a long transmission distance and high transmission rate.
RESUMO
A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.
RESUMO
A 10 m/25 Gbps light-based WiFi (LiFi) transmission system based on a two-stage injection-locked 680 nm vertical-cavity surface-emitting laser (VCSEL) transmitter is proposed. A LiFi transmission system with a data rate of 25 Gbps is experimentally demonstrated over a 10 m free-space link. To the best of our knowledge, it is the first time a two-stage injection-locked 680 nm VCSEL transmitter in a 10 m/25 Gbps LiFi transmission system has been employed. Impressive bit error rate performance and a clear eye diagram are achieved in the proposed systems. Such a 10 m/25 Gbps LiFi transmission system provides the advantage of a communication link for higher data rates that could accelerate the deployment of visible laser light communication.
RESUMO
Serum alpha-fetoprotein (AFP) has been used as a marker for the diagnosis of hepatocellular carcinoma (HCC) and its core fucosylation is associated with the early stage of HCC. However, current methods for the detection of AFP with core fucose are not highly accurate for early diagnosis. In this study, we established an enzyme-assisted mass spectrometric method for the quantitative analysis of AFP/core fucose with high specificity and sensitivity. We employed endoglycosidase treatment of AFP to improve the biomarker analysis. The accuracy and precision are within the US FDA-suggested value, and a good linearity (r2 = 0.9930) and a detection limit of 15.6 ng mL-1 can be achieved.
RESUMO
Having infected by Helicobacter pylori, the infection often leads to gastritis, gastric ulcer, or even gastric cancer. The disease is typically treated with antibiotics as they used to effectively inhibit or kill H. pylori, thus reducing the incidence of gastric adenoma and cancer to significant extent. H. pylori, however, has developed drug resistance to many clinically used antibiotics over the years, highlighting the crisis of antibiotic failure during the H. pylori treatment. We report here that the fucoidan from Sargassum hemiphyllum can significantly reduce the infection of H. pylori without developing to drug resistance. Fucoidan appears to be a strong anti-inflammation agent as manifested by the RAW264.7 cell model examination. Fucoidan can prohibit H. pylori adhesion to host cells, thereby reducing the infection rate by 60%, especially in post treatment in the AGS cell model assay. Mechanistically, fucoidan intervenes the adhesion of BabA and AlpA of H. pylori significantly lowering the total count of H. pylori and the level of IL-6 and TNF-α in vivo. These results all converge on the same fact that fucoidan is an effective agent in a position to protect the stomach from the H. pylori infection by reducing both the total count and induced inflammation.
Assuntos
Antineoplásicos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Polissacarídeos/uso terapêutico , Sargassum/química , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Helicobacter pylori/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7 , Estômago/efeitos dos fármacos , Estômago/imunologia , Estômago/metabolismoRESUMO
Atopic dermatitis (AD) is a T helper (Th) 2 cell-mediated allergic disease, which features increased number of immunocytes and level of Th2-associated cytokines. Fucoidan is well known a naturally occurring agent effectively ameliorating many AD symptoms. Though these alleviative effects are exhilarating, the mechanisms behind, however, are still rather limited. In this study, we report that fucoidan derived from Cladosiphon okamuranus (FT) inhibits nitric oxide (NO) production by exerting its anti-inflammatory ability. Topical application on animals show that FT promotes skin repair, reduces immunocyte proliferation, and decreases serum IgE level. In histological analysis, FT favorably reduces epidermal hyperplasia and eosinophilic infiltration. The pharmacodynamics mechanism of FT is determined by means of down-regulating AD-associated cytokines (IL-4, IL-5, IL-22, IL-33, and TSLP) and up-regulating TGF-ß1 level. Moreover, FT can regulate systemic immunity by enhancing tolerogenic dendritic cells (Tol-DCs) to activate regulatory T cells (Treg) differentiation and to decrease the population of Th22 and memory B cells. Overall, topical application of FT is able to enhance Treg secreting TGF-ß1 and to down-regulate Th2 cell-mediated immunity so that AD symptoms are significantly alleviated. Thereby, FT is an ideal drug candidate potentially replacing or complementing corticosteroids to be developed and used as a therapeutic agent to treat AD.
Assuntos
Dermatite Atópica/tratamento farmacológico , Polissacarídeos/administração & dosagem , Polissacarídeos/uso terapêutico , Alga Marinha/química , Administração Tópica , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/toxicidade , Esquema de Medicação , Masculino , Células B de Memória/efeitos dos fármacos , Células B de Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Polissacarídeos/química , Células RAW 264.7 , Linfócitos T Reguladores , Células Th2/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Atopic dermatitis (AD) is a long-term allergic skin disorder that occurs most frequently in children. Currently, the common treatment of AD is corticosteroids; however, the drugs cause serious side effects. Therefore, there are many patients who seek complementary and alternative treatments such as healthy food. We report that fucoidan from Cladosiphon okamuranus (COP) exhibit exceptional immuno-modulatory effects significantly improving atopic dermatitis (AD) at both in vitro and in vivo levels: First, we performed the P815 cell degranulation assay, of which the results revealed that COP possesses anti-degranulation activity suggesting COP is very conducive to relieving allergic reactions of AD. Next, we performed the animal model examination, of which AD was significantly improved, suggesting COP can focally and globally modulate the immune systems of animals. The systemic improvements were manifested clearly by decreased epidermal hyperplasia, reduced infiltration of eosinophils, and decreased expression of AD-associated cytokines. Notably, COP reduced epidermal hyperplasia by downregulating the expression of IL-22. COP displayed therapeutic effects, which is comparable to corticosteroids but lack corticosteroid side effects, such as weight loss in our animal study. COP is multitudinous immunomodulatory abilities to serve as a healthy food supplement at the current stage, not least beneficial to atopic dermatitis.
Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Imunomodulação , Phaeophyceae/química , Polissacarídeos/uso terapêutico , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Citocinas/sangue , Citocinas/metabolismo , Dermatite Atópica/sangue , Dinitroclorobenzeno , Modelos Animais de Doenças , Epiderme/efeitos dos fármacos , Epiderme/patologia , Histamina/metabolismo , Imunoglobulina E/sangue , Imunomodulação/efeitos dos fármacos , Interleucina-4/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Peso Molecular , Monossacarídeos/análise , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologiaRESUMO
Understanding mechanisms of cooperation between oncogenes is critical for the development of novel therapies and rational combinations. Acute myeloid leukemia (AML) cells with KMT2A-fusions and KMT2A partial tandem duplications (KMT2APTD) are known to depend on the histone methyltransferase DOT1L, which methylates histone 3 lysine 79 (H3K79). About 30% of KMT2APTD AMLs carry mutations in IDH1/2 (mIDH1/2). Previous studies showed that 2-hydroxyglutarate produced by mIDH1/2 increases H3K79 methylation, and mIDH1/2 patient samples are sensitive to DOT1L inhibition. Together, these findings suggested that stabilization or increases in H3K79 methylation associated with IDH mutations support the proliferation of leukemias dependent on this mark. However, we found that mIDH1/2 and KMT2A alterations failed to cooperate in an experimental model. Instead, mIDH1/2 and 2-hydroxyglutarate exert toxic effects, specifically on KMT2A-rearranged AML cells (fusions/partial tandem duplications). Mechanistically, we uncover an epigenetic barrier to efficient cooperation; mIDH1/2 expression is associated with high global histone 3 lysine 79 dimethylation (H3K79me2) levels, whereas global H3K79me2 is obligate low in KMT2A-rearranged AML. Increasing H3K79me2 levels, specifically in KMT2A-rearrangement leukemias, resulted in transcriptional downregulation of KMT2A target genes and impaired leukemia cell growth. Our study details a complex genetic and epigenetic interaction of 2 classes of oncogenes, IDH1/2 mutations and KMT2A rearrangements, that is unexpected based on the high percentage of IDH mutations in KMT2APTD AML. KMT2A rearrangements are associated with a trend toward lower response rates to mIDH1/2 inhibitors. The substantial adaptation that has to occur for 2 initially counteracting mutations to be tolerated within the same leukemic cell may provide at least a partial explanation for this observation.
Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Metilação , OncogenesRESUMO
Gene perturbation studies have been extensively used to investigate the role of individual genes in AML pathogenesis. For achieving complete gene disruption, many of these studies have made use of complex gene knockout models. While these studies with knockout mice offer an elegant and time-tested system for investigating genotype-to-phenotype relationships, a rapid and scalable method for assessing candidate genes that play a role in AML cell proliferation or survival in AML models will help accelerate the parallel interrogation of multiple candidate genes. Recent advances in genome-editing technologies have dramatically enhanced our ability to perform genetic perturbations at an unprecedented scale. One such system of genome editing is the CRISPR-Cas9-based method that can be used to make rapid and efficacious alterations in the target cell genome. The ease and scalability of CRISPR/Cas9-mediated gene-deletion makes it one of the most attractive techniques for the interrogation of a large number of genes in phenotypic assays. Here, we present a simple assay using CRISPR/Cas9 mediated gene-disruption combined with high-throughput flow-cytometry-based competition assays to investigate the role of genes that may play an important role in the proliferation or survival of human and murine AML cell lines.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais , Humanos , Camundongos , Camundongos KnockoutRESUMO
A subset of acute myeloid and lymphoid leukemia cases harbor a t(10;11)(p13;q14) translocation resulting in the CALM-AF10 fusion gene. Standard chemotherapeutic strategies are often ineffective in treating patients with CALM-AF10 fusions. Hence, there is an urgent need to identify molecular pathways dysregulated in CALM-AF10-positive leukemias which may lay the foundation for novel targeted therapies. Here we demonstrate that the Polycomb Repressive Complex 1 gene BMI1 is consistently overexpressed in adult and pediatric CALM-AF10-positive leukemias. We demonstrate that genetic Bmi1 depletion abrogates CALM-AF10-mediated transformation of murine hematopoietic stem and progenitor cells (HSPCs). Furthermore, CALM-AF10-positive murine and human AML cells are sensitive to the small-molecule BMI1 inhibitor PTC-209 as well as to PTC-596, a compound in clinical development that has been shown to result in downstream degradation of BMI1 protein. PTC-596 significantly prolongs survival of mice injected with a human CALM-AF10 cell line in a xenograft assay. In summary, these results validate BMI1 as a bona fide candidate for therapeutic targeting in AML with CALM-AF10 rearrangements.
Assuntos
Leucemia Mieloide Aguda/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Tiazóis/farmacologia , Células U937 , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Recent studies have shown that use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with an increased risk of myocardial infarction. To explore whether NSAIDs may induce endothelial apoptosis and thereby enhance atherothrombosis, we treated human umbilical vein endothelial cells (HUVECs) with sulindac sulfide (SUL), indomethacin (IND), aspirin (ASA), or sodium salicylate (NaS), and we analyzed apoptosis. SUL and/or IND significantly increased annexin V-positive cells, cleaved poly(ADP-ribose) polymerase (PARP) and caspase-3. ASA and NaS at 1 mM did not induce PARP cleavage or caspase-3 and at 5 mM, ASA but not NaS increased apoptosis. Because peroxisome proliferator-activated receptor delta-mediated 14-3-3epsilon up-regulation was reported to play a crucial role in protecting against apoptosis, we determined whether NSAIDs suppress this transcriptional pathway. SUL, IND, and ASA (5 mM) suppressed PPARdelta and 14-3-3 proteins in a manner parallel to PARP cleavage. Neither ASA nor NaS at 1 mM interfered with PPARdelta or 14-3-3epsilon expression. SUL inhibited PPARdelta promoter activity, which correlated with 14-3-3epsilon promoter suppression. Suppression of 14-3-3epsilon was associated with increased Bad translocation to mitochondria. Neither carbaprostacylin nor 4-(3-(2-propyl-3-hydroxy-4-acetyl)-phenoxy)propyloxyphenoxy acetic acid (L-165041) prevented HUVECs from SUL-induced apoptosis. Because of suppression of ectopic PPARdelta by sulindac, adenoviral PPARdelta transduction failed to restore 14-3-3epsilon or prevent PPAR cleavage. Our findings suggest that NSAIDs, but not aspirin (<1 mM) induce endothelial apoptosis via suppression of PPARdelta-mediated 14-3-3epsilon expression.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , PPAR delta/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas 14-3-3/metabolismo , Adenoviridae/genética , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Citometria de Fluxo , Humanos , Ligantes , Mitocôndrias/efeitos dos fármacos , PPAR delta/metabolismo , Regiões Promotoras GenéticasRESUMO
The importance of epigenetic dysregulation to acute myeloid leukemia (AML) pathophysiology has become increasingly apparent in recent years. Epigenetic regulators, including readers, writers, and erasers, are recurrently dysregulated by way of chromosomal translocations, somatic mutations, or genomic amplification in AML and many of these alterations are directly implicated in AML pathogenesis. Mutations in epigenetic regulators are often discovered in founder clones and persist after therapy, indicating that they may contribute to a premalignant state poised for the acquisition of cooperating mutations and frank malignancy. Apart from the proto-oncogenic impact of these mutations, the AML epigenome is also shaped by other epigenetic factors that are not mutated but co-opted by AML oncogenes, presenting with actionable vulnerabilities in this disease. Targeting the AML epigenome might also be important for eradicating AML leukemia stem cells, which can be critical for disease maintenance and resistance to therapy. In this review, we describe the importance of epigenetic regulators in AML. We also summarize evidence implicating specific epigenetic regulators in AML pathobiology and discuss emerging epigenome-based therapies for the treatment of AML in the clinic.
RESUMO
Mitochondrial function is applied as oxidative stress and neuronal damage index. In this study, d-galactose was used to induce free radicals production and neuronal damage in HN-h cells, and the effect of novel 43â¯kDa protein isolated from oyster on anti-mitochondrial dysfunction and zinc-binding ability were evaluated. Crystal violet stain results indicated zinc-binding protein of oyster (ZPO) attenuated neuronal cell death induced by 100â¯mM of d-galactose on HN-h cells in a dose-dependent manner. ZPO alleviated mitochondrial inactivation, mitochondrial membrane potential decreasing, oxidative stress, and fusion/fission state in non-cytotoxic concentration of d-galactose (50â¯mM)-treated HN-h cells. ZPO treatment recovered metallathionein-3 (MT-3) decrease and inhibited ß- and γ-secretase as well as amyloid beta (Aß) accumulation in HN-h cells caused by d-galactose induction. These results suggest ZPO could avoid oxidative stress and is a functional protein for zinc concentration maintainability, which has potential for development of functional foods for neuronal protection.
Assuntos
Proteínas de Transporte/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Ostreidae/química , Animais , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismoRESUMO
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594-604, Δ605-612 and Δ626-634) and the C-terminal tail (Δ14; deletion of 1164-1177). The expression of Δ594-604 and Δ605-612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626-634 and Δ1164-1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594-604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594-604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.