Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
2.
Small ; : e2401558, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829043

RESUMO

By primarily adjusting the reagent amounts, particularly the volume of AgNO3 solution introduced, Ag2O cubes with decreasing sizes from 440 to 79 nm, octahedra from 714 to 106 nm, and rhombic dodecahedra from 644 to 168 nm are synthesized. 733 nm cuboctahedra are also prepared for structural analysis. With in-house X-ray diffraction (XRD) peak calibration, shape-related peak shifts are recognizable. Synchrotron XRD measurements at 100 K reveal the presence of bulk and surface layer lattices. Bulk cell constants also deviate slightly. They show a negative thermal expansion behavior with shrinking cell constants at higher temperatures. The Ag2O crystals exhibit size- and facet-dependent optical properties. Bandgaps red-shift continuously with increasing particle sizes. Optical facet effect is also observable. Moreover, synchrotron XRD peaks of a mixture of Cu2O rhombicuboctahedra and edge- and corner-truncated cubes exposing all three crystal faces can be deconvoluted into three components with the bulk and the [111] microstrain phase as the major component. Interestingly, while the unheated Cu2O sample shows clear diffraction peak asymmetry, annealing the sample to 450 K yields nearly symmetric peaks even when returning the sample to room temperature, meaning even moderately high temperatures can permanently change the crystal lattice.

3.
Small ; 19(9): e2205920, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36521932

RESUMO

BaTiO3 octahedra, edge-, and corner-truncated cubes, and cubes with four tunable sizes from 132 to 438 nm are synthesized by a solvothermal growth approach. Acetic acid treatment can cleanly remove BaCO3 impurity. Rietveld refinement of X-ray diffraction patterns and Raman spectra help to confirm the particles have a tetragonal crystal structure. The crystals also exhibit size- and facet-dependent bandgap shifts. BaTiO3 octahedra show larger piezoelectric, ferroelectric, and pyroelectric effects than truncated cubes and cubes. The measured dielectric constant differences should be associated with their various facet-dependent behaviors. Piezoelectric nanogenerators fabricated from BaTiO3 octahedra consistently show the best performance than those containing truncated cubes and cubes. In particular, a nanogenerator with 30 wt.%-incorporated octahedra displays an open-circuit voltage of 23 V and short-circuit current of 324 nA. The device performance is also highly stable. The maximum output power reaches 3.9 µW at 60 MΩ. The fabricated nanogenerator can provide sufficient electricity to power light-emitting diodes. This work further demonstrates that various physical properties of semiconductor crystals show surface dependence.

4.
Small ; 19(44): e2303491, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381620

RESUMO

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

5.
Cancer Sci ; 113(10): 3405-3416, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35879596

RESUMO

Most breast cancer-related deaths are caused by metastasis in vital organs including the lungs. Development of supportive metastatic microenvironments, referred to as premetastatic niches (PMNs), in certain distant organs before arrival of metastatic cells, is critical in metastasis. However, the mechanisms of PMN formation are not fully clear. Here, we demonstrated that chemoattractant C-C motif chemokine ligand 2 (CCL2) could be stimulated by heat shock protein 60 (HSP60) on the surface of murine 4 T1 breast cancer cell-released LC3+ extracellular vesicles (LC3+ EVs) via the TLR2-MyD88-NF-κB signal cascade in lung fibroblasts, which subsequently promoted lung PMN formation through recruiting monocytes and suppressing T cell function. Consistently, reduction of LC3+ EV release or HSP60 level or neutralization of CCL2 markedly attenuated PMN formation and lung metastasis. Furthermore, the number of circulating LC3+ EVs and HSP60 level on LC3+ EVs in the plasma of breast cancer patients were positively correlated with disease progression and lung metastasis, which might have potential value as biomarkers of lung metastasis in breast cancer patients (AUC = 0.898, 0.694, respectively). These findings illuminate a novel mechanism of PMN formation and might provide therapeutic targets for anti-metastasis therapy for patients with breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Neoplasias da Mama/patologia , Chaperonina 60/metabolismo , Fatores Quimiotáticos/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Associadas aos Microtúbulos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Metástase Neoplásica/patologia , Receptor 2 Toll-Like , Microambiente Tumoral
6.
Cytometry A ; 99(6): 575-585, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682272

RESUMO

The alignment of a 2D microscopic image stack to create a 3D image volume is an indispensable aspect of serial section electron microscopy (EM) technology, which could restore the original 3D integrity of biological tissues destroyed by chemical fixation and physical dissection. However, due to the similar texture intrasection and complex variations intersections of neural images, previous registration methods usually failed to yield reliable correspondences. And this also led to misalignment and impeded restoring the z-axis anatomical continuity of the neuron volume. In this article, inspired by human behaviors in finding correspondences, which use the topological relationship of image contents, we developed a spatial attention-based registration method for serial EM images to improve registration accuracy. Our approach combined the U-Net framework with spatial transformer networks (STN) to regress corresponding transformation maps in an unsupervised training fashion. The spatial attention (SA) module was incorporated into the U-Net architecture to increase the distinctiveness of image features by modeling its topological relationship. Experiments are conducted on both simulated and real data sets (MAS and RegCremi). Quantitative and qualitative comparisons demonstrate that our approach results in state of art accuracy (using the evaluation index of NCC, SSIM, Dice, Landmark error) and providing smooth and reliable transformation with less texture blur and unclear boundary than existing techniques. Our method is able to restore image stacks for visualization and quantitative analysis of EM image sequences.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Algoritmos , Humanos , Microscopia Eletrônica
8.
Respir Res ; 20(1): 168, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358001

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease characterized by structural distortion of the lungs. Transforming growth factor-beta (TGF-beta) is a key cytokine implicated in the pathogenesis of pulmonary fibrosis. TGF-beta-induced myofibroblast differentiation characterized by expression of smooth muscle alpha-actin and extracellular matrix proteins is a key process in pathogenesis of fibrotic disease. Tannic acid is a natural polyphenol with diverse applications. In this study, we investigated the effect of tannic acid on myofibroblast differentiation and pulmonary fibrosis in cultured cells and in bleomycin model of the disease. METHODS: Primary cultured human lung fibroblasts (HLF) were used. The relative levels of proteins were determined by Western blotting. HLF contraction was measured by traction microscopy. Bleomycin-induced pulmonary fibrosis in mice was used as the disease model. RESULTS: Tannic acid inhibited TGF-beta-induced expression of collagen-1 and smooth muscle alpha-actin (SMA) as well as force generation by HLF. Tannic acid did not affect initial phosphorylation of Smad2 in response to TGF-beta, but significantly inhibited sustained Smad2 phosphorylation, which we recently described to be critical for TGF-beta-induced myofibroblast differentiation. Accordingly, tannic acid inhibited Smad-dependent gene transcription in response to TGF-beta, as assessed using luciferase reporter for the activity of Smad-binding elements. Finally, in mouse model of bleomycin-induced pulmonary fibrosis, therapeutic application of tannic acid resulted in a significant reduction of lung fibrosis, decrease in collagen-1 content and of Smad2 phosphorylation in the lungs. CONCLUSIONS: This study demonstrates the anti-fibrotic effect of tannic acid in vitro and in vivo through a regulation of sustained Smad2 phosphorylation.


Assuntos
Antifibrinolíticos/farmacologia , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Taninos/farmacologia , Animais , Antifibrinolíticos/uso terapêutico , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Taninos/uso terapêutico
9.
Soft Matter ; 12(12): 3110-20, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26906684

RESUMO

Four simple rodlike Schiff base mesogens with tolane moiety were synthesized and applied to stabilize cubic blue phases (BPs) in simple binary mixture systems for the first time. When the chiral additive or was added into a chiral salicylaldimine-based compound, the temperature range of the cubic BP could be extended by more than 20 °C. However, when the chiral Schiff base mesogen was blended with chiral dopant possessing opposite handedness, , BPs could not be observed. Interestingly, the widest temperature range of the cubic BPs (∼35 °C) could be induced by adding the rodlike chiral dopant or into the rodlike racemic Schiff base mesogen with hydroxyl group. On the basis of our experimental results and molecular modeling, the appearance and temperature range of the BPs are affected by the dipole moment and the biaxiality of the molecular geometry. Accordingly, we demonstrated that the hydroxyl group and the methyl branch in this type of Schiff base mesogen play an important role in the stabilization of BPs.

10.
Am J Respir Cell Mol Biol ; 50(4): 787-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24199649

RESUMO

Gata5 is a transcription factor expressed in the lung, but its physiological role is unknown. To test whether and how Gata5 regulates airway constrictor responsiveness, we studied Gata5(-/-), Gata5(+/-), and wild-type mice on the C57BL/6J background. Cholinergic airway constrictor responsiveness was assessed invasively in mice without and with induction of allergic airway inflammation through ovalbumin sensitization and aerosol exposure. Gata5-deficient mice displayed native airway constrictor hyperresponsiveness (AHR) in the absence of allergen-induced inflammation. Gata5-deficient mice retained their relatively greater constrictor responsiveness even in ovalbumin-induced experimental asthma. Gata5 deficiency did not alter the distribution of cell types in bronchoalveolar lavage fluid, but bronchial epithelial mucus metaplasia was more prominent in Gata5(-/-) mice after allergen challenge. Gene expression profiles revealed that apolipoprotein E (apoE) was the fifth most down-regulated transcript in Gata5-deficient lungs, and quantitative RT-PCR and immunostaining confirmed reduced apoE expression in Gata5(-/-) mice. Quantitative RT-PCR also revealed increased IL-13 mRNA in the lungs of Gata5-deficient mice. These findings for the first time show that Gata5 regulates apoE and IL-13 expression in vivo and that its deletion causes AHR. Gata5-deficient mice exhibit an airway phenotype that closely resembles that previously reported for apoE(-/-) mice: both exhibit cholinergic AHR in native and experimental asthma states, and there is excessive goblet cell metaplasia after allergen sensitization and challenge. The Gata5-deficient phenotype also shares features that were previously reported for IL-13-treated mice. Together, these results indicate that Gata5 deficiency induces AHR, at least in part, by blunting apoE and increasing IL-13 expression.


Assuntos
Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Broncoconstrição , Fator de Transcrição GATA5/deficiência , Pulmão/metabolismo , Pneumonia/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Asma/induzido quimicamente , Asma/genética , Asma/fisiopatologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/fisiopatologia , Modelos Animais de Doenças , Fator de Transcrição GATA5/genética , Regulação da Expressão Gênica , Genótipo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Interleucina-13/genética , Interleucina-13/metabolismo , Pulmão/fisiopatologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ovalbumina , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/fisiopatologia
11.
J Leukoc Biol ; 115(4): 633-646, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38066571

RESUMO

Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.


Assuntos
Células Supressoras Mieloides , Terapia Viral Oncolítica , Vacínia , Animais , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/patologia , Linfócitos T Citotóxicos , Microambiente Tumoral , Vacínia/patologia , Vaccinia virus
12.
J Ethnopharmacol ; 329: 118127, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583728

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Transdução de Sinais/efeitos dos fármacos , Deficiência de Colina/complicações , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Modelos Animais de Doenças , Farmacologia em Rede , Anti-Inflamatórios/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos
13.
J Immunother Cancer ; 12(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926151

RESUMO

BACKGROUND: Lung metastasis is the primary cause of breast cancer-related mortality. Neutrophil extracellular traps (NETs) are involved in the progression of breast cancer. However, the mechanism of NET formation is not fully understood. This study posits that tumor cell-released autophagosomes (TRAPs) play a crucial role in this process. METHODS: TRAPs were isolated from breast cancer cell lines to analyze their impact on NET formation in both human and mouse neutrophils. The study used both in vitro and in vivo models, including Toll-like receptor 4 (TLR4-/-) mice and engineered breast cancer cell lines. Immunofluorescence, ELISA, Western blotting, RNA sequencing, and flow cytometry were employed to dissect the signaling pathways leading to NET production and to explore their immunosuppressive effects, particularly focusing on the impact of NETs on T-cell function. The therapeutic potential of targeting TRAP-induced NETs and their immunosuppressive functions was evaluated using DNase I and αPD-L1 antibodies. Clinical relevance was assessed by correlating circulating levels of TRAPs and NETs with lung metastasis in patients with breast cancer. RESULTS: This study showed that TRAPs induced the formation of NETs in both human and mouse neutrophils by using the high mobility group box 1 and activating the TLR4-Myd88-ERK/p38 signaling axis. More importantly, PD-L1 carried by TRAP-induced NETs inhibited T-cell function in vitro and in vivo, thereby contributing to the formation of lung premetastatic niche (PMN) immunosuppression. In contrast, Becn1 KD-4T1 breast tumors with decreased circulating TRAPs in vivo reduced the formation of NETs, which in turn attenuated the immunosuppressive effects in PMN and resulted in a reduction of breast cancer pulmonary metastasis in murine models. Moreover, treatment with αPD-L1 in combination with DNase I that degraded NETs restored T-cell function and significantly reduced tumor metastasis. TRAP levels in the peripheral blood positively correlated with NET levels and lung metastasis in patients with breast cancer. CONCLUSIONS: Our results demonstrate a novel role of TRAPs in the formation of PD-L1-decorated NETs, which may provide a new strategy for early detection and treatment of pulmonary metastasis in patients with breast cancer.


Assuntos
Autofagossomos , Antígeno B7-H1 , Neoplasias da Mama , Armadilhas Extracelulares , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/secundário , Armadilhas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Autofagossomos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral
14.
Biochem J ; 446(1): 89-98, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22625849

RESUMO

Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp -118 to -113 in mice; bp -164 to -159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5'-CACGTG-3'), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)-PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.


Assuntos
Elementos E-Box , Fator de Transcrição GATA5/genética , Regiões Promotoras Genéticas , Fatores Estimuladores Upstream/metabolismo , Animais , Sítios de Ligação , Brônquios/citologia , Células Epiteliais/metabolismo , Fator de Transcrição GATA5/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Sequências Reguladoras de Ácido Nucleico , Fatores Estimuladores Upstream/genética
15.
Life Sci ; 322: 121326, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639053

RESUMO

AIMS: Eucommia is the tree bark of Eucommia japonica, family Eucommiaceae. In traditional Chinese medicine, Eucommia is often used to treat osteoporosis. Quercetin (QUE), a major flavonoid extract of Eucommia japonica, has been reported to have anti-osteoporosis effects. However, there are no studies reporting the mechanism of QUE in the treatment of iron overload-induced osteoporosis. This study set out to investigate the therapeutic effects of QUE against iron overload-induced bone loss and its potential molecular mechanisms. MATERIALS AND METHODS: In vitro, MC3T3-E1 cells were used to study the effects of QUE on osteogenic differentiation, anti-apoptosis and anti-oxidative stress damage in an iron overload environment (FAC 200 µM). In vivo, we constructed an iron overload mouse model by injecting iron dextrose intraperitoneally and assessed the osteoprotective effects of QUE by Micro-CT and histological analysis. KEY FINDINGS: In vitro, we found that QUE increased the ALP activity of MC3T3-E1 cells in iron overload environment, promoted the formation of bone mineralized nodules and upregulated the expression of Runx2 and Osterix. In addition, QUE was able to reduce FAC-induced apoptosis and ROS production, down-regulated the expression of Caspase3 and Bax, and up-regulated the expression of Bcl-2. In further studies, we found that QUE activated the Nrf2/HO-1 signaling pathway and attenuated FAC-induced oxidative stress damage. The results of the in vivo study showed that QUE was able to reduce iron deposition induced by iron dextrose and attenuate bone loss. SIGNIFICANCE: Our results suggested that QUE protects against iron overload-induced osteoporosis by activating the Nrf2/HO-1 signaling pathway.


Assuntos
Sobrecarga de Ferro , Osteoporose , Animais , Camundongos , Glucose/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Heme Oxigenase-1/metabolismo
16.
Sci Total Environ ; 878: 163187, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001673

RESUMO

The relationship between glomalin-related soil protein (GRSP) and soil aggregation has been a hot topic of research for its close link to soil stability and quality. However, the short-term cultivation of Eucalyptus poses serious threats to soil stability and nutrient stocks, and the effects of GRSP on soil aggregate stability and macronutrient accumulation remain unclear. The aim is to clarify the potential mechanisms affecting soil aggregate stability and macronutrient accumulation in short-term Eucalyptus plantations. Five Eucalyptus urophylla × Eucalyptus grandis plantations with different cultivation periods (1-5 years) in this study were investigated, and a native evergreen broadleaf forest (0 year) was selected as control. The mean weight diameter index increased in the first 3 years and then significantly decreased during 5 years cultivation of Eucalyptus. Soil organic carbon (SOC) and total nitrogen also decreased after planting Eucalyptus for 3 years, but variation in total phosphorus was not obvious. The relative abundance of Glomeraceae and Claroideoglomeraceae decreased in the 5-year-old Eucalyptus plantations and was positively correlated with GRSP content. In pathway modeling, nutrient-acquisition enzyme activities positively affected GRSP and macronutrient content. Total GRSP (T-GRSP) had higher total effects than easily extractable GRSP on soil aggregate stability, and positively correlated with SOC in macroaggregates. Both T-GRSP and SOC had positive and direct effects on soil aggregate stability. Variance partitioning analysis further explained the contribution of GRSP and SOC to aggregate stability, particularly in >2 and 2-0.25 mm macroaggregates. Our results suggested that GRSP was directly associated with SOC content and soil aggregate stability, and was a potential key factor affecting soil aggregate stability in Eucalyptus plantations. Improving T-GRSP and SOC are efficient approaches for preventing the gradual deterioration of soil aggregate stability. Short-term cultivation should be carefully used in Eucalyptus plantations, and a new cultivation period is needed.


Assuntos
Eucalyptus , Glomeromycota , Solo , Proteínas Fúngicas/metabolismo , Carbono , Glicoproteínas/metabolismo , Nutrientes
17.
Waste Manag ; 169: 101-111, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421822

RESUMO

The existence of metallic aluminum in municipal solid waste incineration fly ash (MSWIFA) makes it challenging to recycle MSWIFA into cement materials because expansion occurs in the resultant matrices. Geopolymer-foamed materials (GFMs) are gaining attention in the field of porous materials due to their high-temperature stability, low thermal conductivity and low CO2 emission. This work aimed to utilize MSWIFA as a foaming agent to synthesize GFMs. The physical properties, pore structure, compressive strength and thermal conductivity were analyzed to assess different GFMs which were synthesized with various MSWIFA and stabilizing agent dosages. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis were conducted to characterize the phase transformation of the GFMs. Results showed that when MSWIFA content was increased from 20 to 50%, the porosity of GFMs increased from 63.5 to 73.7%, and bulk density decreased from 890 to 690 kg/m3. The addition of stabilizing agent could trap the foam, refine the cell size, and homogenize the cell size range. With the stabilizing agent increase from 0 to 4%, the porosity increased from 69.9 to 76.8%, and the bulk density decreased from 800 to 620 kg/m3. The thermal conductivity decreased with increasing MSWIFA from 20 to 50%, and stabilizing agent dosage from 0 to 4%. Compared with the collected data from references, a higher compressive strength can be obtained at the same level of thermal conductivity for GFMs synthesized with MSWIFA as a foaming agent. Additionally, the foaming effect of MSWIFA results from the H2 release. The addition of MSWIFA changed both the crystal phase and gel composition, whereas the stabilizing agent dosage had little impact on the phase composition.


Assuntos
Incineração , Resíduos Sólidos , Incineração/métodos , Cinza de Carvão/química , Excipientes , Força Compressiva
18.
Life Sci ; 312: 121092, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279968

RESUMO

BACKGROUND: Metformin (MET) is widely used as a first-line hypoglycemic agent for the treatment of type 2 diabetes mellitus (T2DM) and was also confirmed to have a therapeutic effect on type 2 diabetic osteoporosis (T2DOP). However, the potential mechanisms of MET in the treatment of T2DOP are unclear. OBJECTIVE: To clarify the effect of MET in T2DOP and to explore the potential mechanism of MET in the treatment of T2DOP. METHODS: In vitro, we used MC3T3-E1 cells to study the effects of MET on osteogenic differentiation and anti-oxidative stress injury in a high glucose (Glucose 25 mM) environment. In vivo, we directly used db/db mice as a T2DOP model and assessed the osteoprotective effects of MET by Micro CT and histological analysis. RESULTS: In vitro, we found that MET increased ALP activity in MC3T3-E1 cells in a high-glucose environment, promoted the formation of bone mineralized nodules, and upregulated the expression of the osteogenesis-related transcription factors RUNX2, Osterix, and COL1A1-related genes. In addition, MET was able to reduce high glucose-induced reactive oxygen species (ROS) production. In studies on the underlying mechanisms, we found that MET activated the Nrf2/HO-1 signaling pathway and alleviated high-glucose-induced oxidative stress injury. In vivo results showed that MET reduced bone loss and bone microarchitecture destruction in db/db mice. CONCLUSION: Our results suggest that MET can activate the Nrf2/HO-1 signaling pathway to regulate the inhibition of osteogenic differentiation induced by high glucose thereby protecting T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/metabolismo , Estresse Oxidativo , Transdução de Sinais
19.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333255

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and (ii) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.

20.
Biomed Pharmacother ; 168: 115751, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879214

RESUMO

Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1ß-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.


Assuntos
Curcumina , Osteoartrite do Joelho , Humanos , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Catalase/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Peróxido de Hidrogênio/farmacologia , Condrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA