RESUMO
Purkinje cells (PCs) are spontaneously active neurons of the cerebellar cortex that inhibit glutamatergic projection neurons within the deep cerebellar nuclei (DCN) that provide the primary cerebellar output. Brief reductions of PC firing rapidly increase DCN neuron firing. However, prolonged reductions of PC inhibition, as seen in some disease states, certain types of transgenic mice, during optogenetic suppression of PC firing, and in acute slices of the cerebellum, do not lead to large, sustained increases in DCN firing. Here we test whether DCN neurons undergo spike frequency adaptation that could account for these properties. We perform current-clamp recordings at near physiological temperature in acute brain slices from mice of both sexes to examine how DCN neurons respond to prolonged depolarizations. DCN neuron adaptation is exceptionally slow and bidirectional. A depolarizing current step evokes large initial increases in firing that decay to â¼20% of the initial increase within â¼10 s. We find that spike frequency adaptation in DCN neurons is mediated by a novel mechanism that is independent of the most promising candidates, including calcium entry and Na+-activated potassium channels mediated by Slo2.1 and Slo2.2 Slow adaptation allows DCN neurons to gradually and bidirectionally adapt to prolonged currents but to respond linearly to current injection on rapid timescales. This suggests that an important consequence of slow adaptation is that DCN neurons respond linearly to the rate of PC firing on rapid timescales but adapt to slow firing rate changes of PCs on long timescales.SIGNIFICANCE STATEMENT Excitatory neurons in the cerebellar nuclei provide the primary output from the cerebellum. This study finds that these neurons exhibit very slow bidirectional spike frequency adaptation that has important implications for cerebellar function. This mechanism allows neurons in the cerebellar nuclei to adapt to long-lasting changes in synaptic drive while also remaining responsive to short-term changes in excitatory or inhibitory drive.
Assuntos
Núcleos Cerebelares , Neurônios , Masculino , Feminino , Camundongos , Animais , Núcleos Cerebelares/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Cerebelo , Interneurônios , Camundongos Transgênicos , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Sódio , Proteínas do Tecido NervosoRESUMO
The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.
RESUMO
We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves.
RESUMO
Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington's disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-Cre(ERT2) mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97(CRE)). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal functional connectivity and plasticity. These findings strongly suggest that developmental aberrations may play important roles in HD pathogenesis and progression.
Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Potenciais de Ação , Animais , Apoptose , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Feminino , Neurônios GABAérgicos/fisiologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Força Muscular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Especificidade de Órgãos , Teste de Desempenho do Rota-RodRESUMO
Although the neurobiology of rodent facial whiskers has been studied intensively, little is known about sensing in other vibrissae. Here we describe the under-investigated submandibular "whisker trident" on the rat's chin. In this three-whisker array, a unique unpaired midline whisker is laterally flanked by two slightly shorter whiskers. All three whiskers point to the ground and are curved backwards. Unlike other whiskers, the trident is not located on an exposed body part. Trident vibrissae are not whisked and do not touch anything over long stretches of time. However, trident whiskers engage in sustained ground contact during head-down running while the animal is exploring or foraging. In biomechanical experiments, trident whiskers follow caudal ground movement more smoothly than facial whiskers. Remarkably, deflection angles decrease with increasing ground velocity. We identified one putative trident barrel in the left somatosensory cortex and two barrels in the right somatosensory cortex. The elongated putative trident-midline barrel is the longest and largest whisker barrel, suggesting that the midline trident whisker is of great functional significance. Cortical postsynaptic air-puff responses in the trident representation show much less temporal precision than facial whisker responses. Trident whiskers do not provide as much high-resolution information about object contacts as facial whiskers. Instead, our observations suggest an idiothetic function: their biomechanics allow trident whiskers to derive continuous measurements about ego motion from ground contacts. The midline position offers unique advantages in sensing heading direction in a laterally symmetric manner. The changes in trident deflection angle with velocity suggest that trident whiskers might function as a tactile speedometer.
Assuntos
Vias Aferentes/fisiologia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Tato , Vibrissas/anatomia & histologia , Vibrissas/inervação , Potenciais de Ação/fisiologia , Animais , Fenômenos Biomecânicos , Mapeamento Encefálico , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Lateralidade Funcional , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Técnicas de Patch-Clamp , Estimulação Física , Ratos , Ratos Long-Evans , Córtex Somatossensorial/citologia , Percepção do Tato/fisiologia , Gravação em VídeoRESUMO
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.
Assuntos
Cerebelo , Células de Purkinje , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Neurônios/fisiologia , Córtex Cerebelar , Núcleos Cerebelares/fisiologia , Potenciais de Ação/fisiologiaRESUMO
The dissipation of turbulence in astrophysical systems is fundamental to energy transfer and heating in environments ranging from the solar wind and corona to accretion disks and the intracluster medium. Although turbulent dissipation is relatively well understood in fluid dynamics, astrophysical plasmas often exhibit exotic behaviour, arising from the lack of interparticle collisions, which complicates turbulent dissipation and heating in these systems. Recent observations by NASA's Parker Solar Probe mission in the inner heliosphere have shed new light on the role of ion cyclotron resonance as a potential candidate for turbulent dissipation and plasma heating. Here, using in situ observations of turbulence and wave populations, we show that ion cyclotron waves provide a major pathway for dissipation and plasma heating in the solar wind. Our results support recent theoretical predictions of turbulence in the inner heliosphere, known as the helicity barrier, that suggest a role of cyclotron resonance in ion-scale dissipation. Taken together, these results provide important constraints for turbulent dissipation and acceleration efficiency in astrophysical plasmas.
RESUMO
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons convey signals from the cerebellar cortex to the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many uniform sized PC inputs are thought to converge onto each CbN neuron to suppress or eliminate firing. Leading theories maintain that PCs encode information using either a rate code, or by synchrony and precise timing. Individual PCs are thought to have limited influence on CbN neuron firing. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modelling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, PC-CbN synapses are suited to concurrently convey rate codes, and generate precisely-timed responses in CbN neurons. Variable input sizes also elevate the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. Although this reduces the relative influence of PC synchrony on the firing rate of CbN neurons, synchrony can still have important consequences, because synchronizing even two large inputs can significantly increase CbN neuron firing. These findings may be generalized to other brain regions with highly variable sized synapses.
RESUMO
Within the cerebellar cortex, mossy fibers (MFs) excite granule cells (GCs) that excite Purkinje cells (PCs), which provide outputs to the deep cerebellar nuclei (DCNs). It is well established that PC disruption produces motor deficits such as ataxia. This could arise from either decreases in ongoing PC-DCN inhibition, increases in the variability of PC firing, or disruption of the flow of MF-evoked signals. Remarkably, it is not known whether GCs are essential for normal motor function. Here we address this issue by selectively eliminating calcium channels that mediate transmission (CaV2.1, CaV2.2, and CaV2.3) in a combinatorial manner. We observe profound motor deficits but only when all CaV2 channels are eliminated. In these mice, the baseline rate and variability of PC firing are unaltered, and locomotion-dependent increases in PC firing are eliminated. We conclude that GCs are indispensable for normal motor performance and that disruption of MF-induced signals impairs motor performance.
Assuntos
Cerebelo , Neurônios , Camundongos , Animais , Cerebelo/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Córtex Cerebelar/fisiologia , Transdução de SinaisRESUMO
In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.
Assuntos
Núcleos Parabraquiais , Células de Purkinje , Células de Purkinje/fisiologia , Cerebelo , Prosencéfalo/fisiologia , Neurônios/metabolismoRESUMO
Climbing fibers from the inferior olive make strong excitatory synapses onto cerebellar Purkinje cell (PC) dendrites and trigger distinctive responses known as complex spikes. We found that, in awake mice, a complex spike in one PC suppressed conventional simple spikes in neighboring PCs for several milliseconds. This involved a new ephaptic coupling, in which an excitatory synapse generated large negative extracellular signals that nonsynaptically inhibited neighboring PCs. The distance dependence of complex spike-simple spike ephaptic signaling, combined with the known CF divergence, allowed a single inferior olive neuron to influence the output of the cerebellum by synchronously suppressing the firing of potentially over 100 PCs. Optogenetic studies in vivo and dynamic clamp studies in slice indicated that such brief PC suppression, as a result of either ephaptic signaling or other mechanisms, could effectively promote firing in neurons in the deep cerebellar nuclei with remarkable speed and precision.
Assuntos
Potenciais de Ação , Células de Purkinje/fisiologia , Sinapses/patologia , Animais , Axônios/fisiologia , Dendritos/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos Endogâmicos C57BLRESUMO
Although the cerebellum is traditionally associated with balance and motor function, it also plays wider roles in affective and cognitive behaviors. Evidence suggests that the cerebellar vermis may regulate aggressive behavior, though the cerebellar circuits and patterns of activity that influence aggression remain unclear. We used optogenetic methods to bidirectionally modulate the activity of spatially-delineated cerebellar Purkinje cells to evaluate the impact on aggression in mice. Increasing Purkinje cell activity in the vermis significantly reduced the frequency of attacks in a resident-intruder assay. Reduced aggression was not a consequence of impaired motor function, because optogenetic stimulation did not alter motor performance. In complementary experiments, optogenetic inhibition of Purkinje cells in the vermis increased the frequency of attacks. These results suggest Purkinje cell activity in the cerebellar vermis regulates aggression, and further support the importance of the cerebellum in driving affective behaviors that could contribute to neurological disorders.
Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Animais , Vermis Cerebelar/fisiologia , Camundongos , Optogenética/métodosRESUMO
The quest to understand how neural circuits process information in order to drive behavioral output has been greatly aided by recently-developed optical methods for manipulating and monitoring the activity of neurons in vivo. These types of experiments rely on two main components: 1) implantable devices that provide optical access to the brain, and 2) light-sensitive proteins that change neuronal excitability or provide a readout of neuronal activity. There are a number of ways to express light-sensitive proteins, but stereotaxic injection of viral vectors is currently the most flexible approach because expression can be controlled with genetic, anatomical, and temporal precision. Despite the great utility of viral vectors, delivering the virus to the site of optical implants poses numerous challenges. Stereotaxic virus injections are demanding surgeries that increase surgical time, increase the cost of studies, and pose a risk to the animal's health. The surrounding tissue can be physically damaged by the injection syringe, and by immunogenic inflammation caused by the abrupt delivery of a bolus of high-titer virus. Aligning injections with optical implants is especially difficult when targeting small regions deep in the brain. To overcome these challenges, we describe a method for coating multiple types of optical implants with films composed of silk fibroin and Adeno-associated viral (AAV) vectors. Fibroin, a polymer derived from the cocoon of Bombyx mori, can encapsulate and protect biomolecules and can be processed into forms ranging from soluble films to ceramics. When implanted into the brain, silk/AAV coatings release virus at the interface between optical elements and the surrounding brain, driving expression precisely where it is needed. This method is easily implemented and promises to greatly facilitate in vivo studies of neural circuit function.
Assuntos
Optogenética/métodos , Receptores de Superfície Celular/metabolismo , Seda/metabolismo , Animais , Camundongos , Filmes CinematográficosRESUMO
The cerebellum has been implicated in a number of nonmotor mental disorders such as autism spectrum disorder, schizophrenia, and addiction. However, its contribution to these disorders is not well understood. In mice, we found that the cerebellum sends direct excitatory projections to the ventral tegmental area (VTA), one of the brain regions that processes and encodes reward. Optogenetic activation of the cerebello-VTA projections was rewarding and, in a three-chamber social task, these projections were more active when the animal explored the social chamber. Intriguingly, activity in the cerebello-VTA pathway was required for the mice to show social preference in this task. Our data delineate a major, previously unappreciated role for the cerebellum in controlling the reward circuitry and social behavior.
Assuntos
Comportamento Animal , Núcleos Cerebelares/fisiologia , Recompensa , Comportamento Social , Área Tegmentar Ventral/fisiologia , Animais , Axônios/fisiologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Sinapses/fisiologiaRESUMO
The first productive reactions of a characterized metallacyclobutene complex with alkenes are reported. Thus, the metallacyclobutene complex (eta5-C5H5)(PPh3)Co[kappa2-(C,C)-C(SO2Ph) C(Si(CH3)3)CH(CO2CH2CH3)] (2) undergoes reaction with alkenes to give 1,4-diene complexes with a high degree of regio- and stereoselectivity. A mechanism is proposed in which the metallacyclobutene generates a cyclic vinylcarbene intermediate that undergoes [4 + 2]-cycloaddition reactions with activated alkenes. A model of the vinylcarbene intermediate has been examined using quantum mechanical methods.
RESUMO
Correlated neuronal activity at various timescales plays an important role in information transfer and processing. We find that in awake-behaving mice, an unexpectedly large fraction of neighboring Purkinje cells (PCs) exhibit sub-millisecond synchrony. Correlated firing usually arises from chemical or electrical synapses, but, surprisingly, neither is required to generate PC synchrony. We therefore assessed ephaptic coupling, a mechanism in which neurons communicate via extracellular electrical signals. In the neocortex, ephaptic signals from many neurons summate to entrain spiking on slow timescales, but extracellular signals from individual cells are thought to be too small to synchronize firing. Here we find that a single PC generates sufficiently large extracellular potentials to open sodium channels in nearby PC axons. Rapid synchronization is made possible because ephaptic signals generated by PCs peak during the rising phase of action potentials. These findings show that ephaptic coupling contributes to the prevalent synchronization of nearby PCs.
Assuntos
Potenciais de Ação/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Animais , Cerebelo/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Células de Purkinje/químicaRESUMO
Optical methods of interrogating neural circuits have emerged as powerful tools for understanding how the brain drives behaviors. Optogenetic proteins are widely used to control neuronal activity, while genetically encoded fluorescent reporters are used to monitor activity. These proteins are often expressed by injecting viruses, which frequently leads to inconsistent experiments due to misalignment of expression and optical components. Here, we describe how silk fibroin films simplify optogenetic experiments by providing targeted delivery of viruses. Films composed of silk fibroin and virus are applied to the surface of implantable optical components. After surgery, silk releases the virus to transduce nearby cells and provide localized expression around optical fibers and endoscopes. Silk films can also be used to express genetically encoded sensors in large cortical regions by using cranial windows coated with a silk/virus mixture. The ease of use and improved performance provided by silk make this a promising approach for optogenetic studies.
Assuntos
Fibroínas/metabolismo , Optogenética/métodos , HumanosRESUMO
The graceful, purposeful motion of our body is an engineering feat that remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow, multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. We found that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway in mice. Under physiological conditions, this short latency pathway was capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition, this pathway relayed aberrant cerebellar activity to the basal ganglia to cause dystonia.