Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 5(31): 19868-19876, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803083

RESUMO

Deinococcus ficus CC-FR2-10T, resistant to ultraviolet, ionizing radiation, and chemicals which may cause DNA damage, was identified in Taiwan. The expression level of D. ficus RecA, which has 92% sequence identity with Deinococcus radiodurans (Dr.) RecA, will be upregulated upon UV radiation. Multiple sequence alignment of RecA proteins from bacteria belonging to Escherichia coli and the Deinococcus genus reveals that the C-terminal tail of D. ficus RecA is shorter and contains less acidic residues than E. coli RecA. D. ficus RecA exhibits a higher ATPase activity toward single-stranded (ss) DNA and efficiently promotes DNA strand exchange that a filament is first formed on ssDNA, followed by uptake of the double-stranded (ds) substrate. Moreover, D. ficus RecA exhibits a pH-reaction profile for DNA strand exchange similar to E. coli ΔC17 RecA. Later, a chimera D. ficus C17 E. coli RecA with more acidic residues in the C-terminal tail was constructed and purified. Increased negativity in the C-terminal tail makes the pH reaction profile for Chimera D. ficus C17 E. coli RecA DNA strand exchange exhibit a reaction optimum similar to E. coli RecA. To sum up, D. ficus RecA exhibits reaction properties in substrate-dependent ATPase activity and DNA strand exchange similar to E. coli RecA. Our data indicate that the negativity in the C-terminal tail plays an important role in the regulation of pH-dependent DNA strand exchange activity.

2.
Biochim Biophys Acta Gene Regul Mech ; 1862(2): 129-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30593928

RESUMO

Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Eucariotos/genética , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Histonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA