Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839676

RESUMO

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Assuntos
Camellia sinensis , Monitoramento Ambiental , Nitrogênio , Solo , Solo/química , Camellia sinensis/química , Nitrogênio/análise , China , Concentração de Íons de Hidrogênio , Ecossistema , Fósforo/análise , Chá/química , Agricultura
2.
Environ Sci Technol ; 57(50): 21405-21415, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061893

RESUMO

The ubiquitous occurrence of benzotriazole ultraviolet stabilizers (BUVSs) in the environment and organisms has warned of their potential ecological and health risks. Studies showed that some BUVSs exerted immune and chronic toxicities to animals by disturbing signaling transduction, yet limited research has investigated the toxic effects on crop plants and the underlying mechanisms of signaling regulation. Herein, a laboratory-controlled hydroponic experiment was conducted on rice to explore the phytotoxicity of BUVSs by integrating conventional biochemical experiments, transcriptomic analysis, competitive sorption assays, and computational studies. The results showed that BUVSs inhibited the growth of rice by 6.30-20.4% by excessively opening the leaf stomas, resulting in increased transpiration. BUVSs interrupted the transduction of abscisic acid (ABA) signal through competitively binding to Ca2+-dependent protein kinase (CDPK), weakening the CDPK phosphorylation and further inhibiting the downstream signaling. As structural analogues of ATP, BUVSs acted as potential ABA signaling antagonists, leading to physiological dysfunction in mediating stomatal closure under stresses. This is the first comprehensive study elucidating the effects of BUVSs on the function of key proteins and the associated signaling transduction in plants and providing insightful information for the risk evaluation and control of BUVSs.


Assuntos
Oryza , Animais , Proteínas Quinases , Raios Ultravioleta , Triazóis/farmacologia , Triazóis/análise , Plantas
3.
Proc Natl Acad Sci U S A ; 116(52): 26484-26490, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843927

RESUMO

High-income countries often outsource material demands to poorer countries along with the associated environmental damage. This phenomenon can also occur within (large) countries, such as China, which was responsible for 24 to 30% of the global material footprint (MF) between 2007 and 2010. Understanding the distribution and development of China's MF is hence critical for resource efficiency and circular economy ambitions globally. Here we present a comprehensive analysis of China's MF at the provincial and sectoral levels. We combine provincial-level input-output data with sector- and province-specific trade data, detailed material extraction data, and the global input-output database EXIOBASE. We find that some provinces have MFs equivalent to medium-sized, high-income countries and limited evidence of material decoupling. Lower-income regions with high levels of material extraction can have an MF per capita as large as developed provinces due to much higher material intensities. The higher-income south-coastal provinces have lower MF per capita than equally developed provinces. This finding relates partly to differences in economic structure but indicates the potential for improvement across provinces. Investment via capital formation is up to 4 times more resource-intensive than consumption and drives 49 to 86% of provincial-level MFs (the Organisation for Economic Co-operation and Development average is 37%). Resource-efficient production, efficient use of capital goods/infrastructure, and circular design are essential for reductions in China's MF. Policy efforts to shift to a high-quality development model may reduce material intensities, preferably while avoiding the further outsourcing of high-intensity activities to other provinces or lower-income countries.

4.
Environ Sci Technol ; 55(19): 13356-13365, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34521193

RESUMO

Estimates of riverine N2O emission contain great uncertainty because of the lack of quantitative knowledge concerning riverine N2O sources and fates. Using a 3.5-year record of monthly N2O measurements from the Yongan River network of eastern China, we developed a mass-balance model to address the riverine N2O source and sink processes. We achieved reasonable model efficacies (R2 = 0.44-0.84, Nash-Sutcliffe coefficients = 0.40-0.80) across three tributaries and the entire river system. Estimated riverine N2O loads originated from groundwater (38-88%), surface runoff (3-26%), and in-stream production (4-48%). Estimated in-stream losses via atmospheric release + complete denitrification accounted for 76, 95, 25, and 89% of riverine N2O fate for the agricultural, residential, forest, and entire river system, respectively. Considering limited complete denitrification, the model estimated an upper-bound riverine N2O emission rate of 2.65 ton N2O-N km-2 year-1 for the entire river system. Riverine N2O emission estimates were of comparable magnitude to those estimated with a power-law scaling model. Riverine N2O emissions using the IPCC default emission factor (0.26%) overestimated emissions by 3-15 times, whereas the dissolved N2O concentration-based emission factor overestimated or underestimated emissions. This study highlights the importance of combining comprehensive information on N2O sources and fates to achieve accurate riverine N2O emission estimates.


Assuntos
Água Subterrânea , Rios , Agricultura , China , Monitoramento Ambiental , Óxido Nitroso/análise
5.
Environ Sci Technol ; 54(19): 12732-12741, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845624

RESUMO

Environmentally extended input-output analysis (EE-IO) is widely used for evaluating environmental performance (i.e., footprint) at a national level. Many studies have extended their analyses to the subnational level to guide regional policies. One promising method is to embed nationally disaggregated input-output tables, e.g., nesting a provincial level table, into a global multiregional input-output table. However, a widely used approach to environmental assessment generally disaggregates the trade structure at the national level to the provincial level using the same proportions (proportionality assumption). This means that the subnational spatial heterogeneities on international trade are not fully captured. By calculating the Chinese provincial material footprint (MF) based on two approaches-the proportionality assumption and the actual customs statistics-in the same framework, we evaluate the quantitative differences when the proportionality assumption is addressed. By computing MF for 23 aggregated resources across 30 Chinese provinces, our results show for countries with large material flows like China, estimating subnational-level international trade by proportionality assumption may lead to significant differences in material flows at both the disaggregated and aggregated levels. An important follow-up question is whether these differences are also relevant for other footprints.


Assuntos
Comércio , Internacionalidade , China
6.
J Environ Manage ; 248: 109288, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31382195

RESUMO

Industrial parks (IPs) have always been an important driving force for China's economic development. China has a great number of IPs, and this number is continuing to increase. The rapid development of IPs has brought great pressure on national resources utilization and environmental protection. The Chinese government has committed to the green development of IPs. In recent years, a series of policies on the green development of IPs have been introduced and implemented. Different from the limitation on the number of IPs in previous studies, this study used a larger data set containing 911 IPs. These IPs were divided into eight types according to their leading industries. The long-tail effect model was attempted to be used to provide quantitative description and analysis of the numerical distribution patterns of the indicators of economic output, environmental pollution, and resource consumption in IPs. Based on the long-tail effect model, for this paper, the performance of green development (PGD) in different types of IPs and IPs in different regions was further analyzed. The results show that China's IPs exhibit the distribution pattern of a long-tail effect in all three aspects mentioned above. In terms of environmental pollution, for some types of IPs, the individual performance of IPs in the head part of the model is more prominent. For other types of IPs, the cumulative results caused by IPs in the tail part of the model should be of concern. The PGD of IPs is closely related to their types. There are also obvious differences in the PGD of IPs in eastern and western China. Based on detailed discussion of the research results, at the end, policy implications are provided for the government to make decisions on the green development of IPs.


Assuntos
Conservação dos Recursos Naturais , Indústrias , China , Desenvolvimento Econômico , Poluição Ambiental
7.
Environ Sci Technol ; 52(4): 2025-2035, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29380597

RESUMO

Anthropogenic inputs of reactive nitrogen (Nr) provide sufficient food, energy, and industrial products to meet human demands; however, only a fraction of Nr is consumed as food and nonfood goods, and the rest is lost to the environment and negatively affects ecosystems. High-resolution studies of nitrogen flows are invaluable to increase nitrogen use efficiencies and reduce environmental emissions. In this study, a comprehensive substance flow analysis of nitrogen for China in 2014 is presented. Based on the conceptual framework, which highlights the key roles of human drivers, the analysis of the synthetic ammonia supply and demand balance shows that 75% of ammonia is used for agricultural purposes. Moreover, the life cycle analysis of food nitrogen shows that human food consumption accounts for approximately 7% of the total Nr inputs. A quantitative analysis of pollutant emissions shows that industrial and crop production are the main sources of atmospheric emissions, while livestock farming and crop production are the main sources of water emissions. Finally, we investigate four scenarios (efficiency improvement, high recycling rate, nitrogen oxide emission reduction, and a combined scenario) and provide relevant policy recommendations (large farm size, standardized agricultural production model, flue gas denitration, etc.) for improving nitrogen management practices.


Assuntos
Ecossistema , Nitrogênio , Agricultura , Animais , China , Produção Agrícola , Humanos
8.
Glob Chang Biol ; 22(11): 3566-3582, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170579

RESUMO

Estimates of global riverine nitrous oxide (N2 O) emissions contain great uncertainty. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N2 O emission rates and emission factors. Riverine N2 O flux was significantly correlated with NH4 , NO3 and DIN (NH4  + NO3 ) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2 O emission rate and DIN load) and EF(b) (i.e., the ratio of N2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2 O emission rates (EF(a): R2  = 0.92 for both global and climatic zone models, n = 70; EF(b): R2  = 0.91 for global model and R2  = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2 O emission rates of 29.6-35.3 (mean = 32.2) Gg N2 O-N yr-1 and emission factors of 0.16-0.19% (mean = 0.17%). Global riverine N2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2 O emission rates (300-2100 Gg N2 O-N yr-1 ) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.


Assuntos
Óxido Nitroso , Rios , Carbono , Modelos Teóricos , Nitrogênio
9.
Environ Sci Technol ; 48(10): 5683-90, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24742334

RESUMO

This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures.


Assuntos
Mudança Climática , Atividades Humanas , Nitrogênio/análise , Rios/química , Solo/química , China , Geografia , Humanos , Modelos Teóricos , Análise de Regressão , Fatores de Tempo , Qualidade da Água
10.
Huan Jing Ke Xue ; 45(2): 755-767, 2024 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-38471915

RESUMO

Accurate source identification/apportionment is essential for optimizing water NO3--N pollution control strategies. This study conducted a meta-analysis based on data from 167 rivers across China from 2000 to 2022 to analyze the spatial and temporal variation patterns of nitrate pollution in seven major river systems and to quantitatively identify the source composition of riverine nitrate. The average ρ(NO3--N) in the seven major river systems was (4.54±3.99) mg·L-1, with 9.6% of river ρ(NO3--N) exceeding 10 mg·L-1. The riverine ρ(NO3--N) in eastern China were higher than that in western China, and the highest concentration was observed in the Haihe River system. Additionally, tributaries experienced more serious NO3--N pollution than that in the main stream. The ρ(NO3--N) in most river systems in the dry season was higher than that in the wet season, except in the Yellow River system. There was significant nitrification in the Pearl River system, the middle and lower reaches of the Yellow River system, the middle reaches of the Liaohe River system, the Songhua River system, and the Haihe River system, whereas there was significant denitrification in the Yangtze River system, the Huaihe River system, and the lower reaches of the Pearl River system. Based on the dual stable isotopes-based MixSIAR model, the major NO3--N source was sewage/manure ( > 50%) in the Yangtze River system, Haihe River system, Liaohe River system, and Southeast River system. Soil nitrogen was the main NO3--N source in the Songhua River system (56.4%), and the contribution of fertilizer nitrogen, soil nitrogen, and sewage/manure to NO3--N pollution in the Pearl River system, Huai River system, and Yellow River system was 20%-40%. The contribution rate of sewage/manure to NO3--N in the tributaries was higher than that in the main stream, whereas the contribution rate of soil nitrogen to NO3--N in the main stream was higher than that in the tributaries. The contribution rate of soil nitrogen, fertilizer nitrogen, and atmospheric deposition nitrogen to nitrate nitrogen in the wet season was higher than that in the dry season, whereas the contribution rate of sewage/manure to NO3--N pollution in the dry season was higher than that in the wet season. Therefore, point source pollution such as domestic and production sewage discharge should be controlled in the Haihe River system, the Yangtze River system, the Liaohe River system, the tributaries and the downstream main stream areas of Yellow River system, and the downstream area of the Pearl River system, whereas non-point source pollution caused by the loss of fertilizer and soil nitrogen should be controlled in the Huaihe River system, the Songhua River system, the middle reaches of the main stream area of the Yellow River system, and the middle and upper reaches of the Pearl River system. The results can provide a scientific basis for the effective control of nitrate pollution in the river systems in China.

11.
Sci Total Environ ; 933: 172991, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38719040

RESUMO

Many studies have found predictive relationships between riverine phosphorus (P) export and net anthropogenic P inputs (NAPI) at the watershed scale, but the global or regional extent of these relationships has not been empirically quantified. Herein, we present a data-driven global assessment of the response of riverine total P (TP) fluxes to NAPI based on 358 watersheds. NAPI exhibited high spatial heterogeneity (2-12,085 kg P km-2 yr-1) and was well correlated with riverine TP fluxes. Riverine TP export fractions of NAPI were primarily regulated by NAPI components, hydroclimate factors, and land-use as determined through a random-forest meta-analysis. In watersheds dominated by disturbed land-use (e.g., agricultural and developed lands), runoff emerged as pivotal climate-related factors influencing riverine export fractions of NAPI. In watersheds dominated by natural land-use, runoff, precipitation and temperature were identified as the most critical factors. We developed a mixed-effects meta-regression model (R2 = 0.63-0.70, RMSE = 19-78 %, n = 87-202) to examine the quantitative relationship between riverine TP fluxes and NAPI, which avoids subjectivity in selecting influencing factors and regression forms. The model estimated that legacy P contributed 14-17 % of annual riverine TP fluxes in Chinese watersheds, 25 % in North American watersheds and 11-27 % in European watersheds. Annual NAPI contributions to annual riverine TP flux were 83-86 % in China, 75 % in North America and 73-89 % in Europe. The model forecasted 52-67 %, 69-71 % and 74-77 % reductions in riverine TP fluxes across Chinese, North American, and European watersheds by 2050 under five shared socio-economic pathway scenarios compared to 2010 baseline conditions, respectively. This study provides a straightforward and reliable method for quantifying anthropogenic P input and riverine P export dynamics within an acceptable error range. It provides guidance for developing phosphorus pollution control strategies to counter potential increases in phosphorus inputs due to expected changes in climate and land use.

12.
Huan Jing Ke Xue ; 45(5): 2631-2639, 2024 May 08.
Artigo em Zh | MEDLINE | ID: mdl-38629527

RESUMO

The landscape pattern determines water pollution source and sink processes and plays an important role in regulating river water quality. Due to scale effects, studies on the relationship between landscape pattern and river water quality showed variance at different scales. However, there is still a lack of integrated study on the scale effect of landscape pattern and river water quality dynamics. This study collected 4 041 data from results of previous publications to address the characteristics of landscape pattern and river water quality dynamics at different scales and to identify the key temporal and spatial scales as well as landscape pattern indices for regulating river water quality. The results indicated that, compared to precipitation events, base flow periods, and interannual scales, the high-flow period was the key temporal scale for linking landscape pattern on river water quality. Compared to the watershed scale, the landscape pattern of buffer zones had a greater impact on river water quality. The high-flow period-buffer zone scale was the key spatiotemporal coupling scale for linking landscape pattern and river water quality. Compared to croplands, water bodies, grasslands, and the overall landscape of the watershed, the landscape pattern of forests and urban areas had a greater impact on river water quality. Fragmentation degree was the most important landscape pattern factor regulating river water quality. In river water quality management, it is important to focus on the landscape configuration of buffer zones, increase forest area, reduce patch density of forests and water bodies, and decrease the aggregation degree of urban areas.

13.
Nat Food ; 5(1): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168780

RESUMO

The coupled nature of the nitrogen (N) and phosphorus (P) cycling networks is of critical importance for sustainable food systems. Here we use material flow and ecological network analysis methods to map the N-P-coupled cycling network in China and evaluate its resilience. Results show a drop in resilience between 1980 and 2020, with further decreases expected by 2060 across different socio-economic pathways. Under a clean energy scenario with additional N and P demand, the resilience of the N-P-coupled cycling network would suffer considerably, especially in the N layer. China's socio-economic system may also see greater N emissions to the environment, thus disturbing the N cycle and amplifying the conflict between energy and food systems given the scarcity of P. Our findings on scenario-specific synergies and trade-offs can aid the management of N- and P-cycling networks in China by reducing chemical fertilizer use and food waste, for example.


Assuntos
Eliminação de Resíduos , Resiliência Psicológica , Fósforo/análise , Alimentos , China , Nitrogênio/análise
14.
J Hazard Mater ; 465: 133399, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163411

RESUMO

The activity of single-atom catalysts in peroxymonosulfate activation process is bound up with the local electronic state of metal center. However, the large electronegativity of N atoms in Metal-N4 restricts the electron transfer between center metal atom and peroxymonosulfate. Herein, we constructed Fe-SN-C catalyst by incorporating S atom in the first coordination sphere of Fe single-atom site (Fe-S1N3) for Fenton-like catalysis. The Fe-SN-C with a low valent Fe is found to exhibit excellent catalytic activity for bisphenol A degradation, and the corresponding rate constant reaches 0.405 min-1, 11.9-fold higher than the original Fe-N-C. Besides, the Fe-SN-C/PMS system exhibits ideal catalytic stability under the effect of wide pH range and background substrates by the fast generation of high-valent Fe species. Experimental results and theoretical calculations reveal that the dual coordination of S and N atoms notably increases the local electron density of Fe atoms and electron filling in eg orbital, causing a d band center shifting close to the fermi level and thereby optimizes the activation energy for peroxymonosulfate decomposition via Fe 3d-O 2p orbital interaction. This work provides further development of promising SACs for the efficient activation of peroxymonosulfate based on direct regulation of the coordination environment of active center metal atoms.

15.
Nat Commun ; 15(1): 3854, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719830

RESUMO

Phasing down fossil fuels is crucial for climate mitigation. Even though 80-90% of fossil fuels are used to provide energy, their use as feedstock to produce plastics, fertilizers, and chemicals, is associated with substantial CO2 emissions. However, our understanding of hard-to-abate chemical production remains limited. Here we developed a chemical process-based material flow model to investigate the non-energy use of fossil fuels and CO2 emissions in China. Results show in 2017, the chemical industry used 0.18 Gt of coal, 88.8 Mt of crude oil, and 12.9 Mt of natural gas as feedstock, constituting 5%, 15%, and 7% of China's respective total use. Coal-fed production of methanol, ammonia, and PVCs contributes to 0.27 Gt CO2 emissions ( ~ 3% of China's emissions). As China seeks to balance high CO2 emissions of coal-fed production with import dependence on oil and gas, improving energy efficiency and coupling green hydrogen emerges as attractive alternatives for decarbonization.

16.
Environ Manage ; 52(2): 450-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23797487

RESUMO

A modeling system that couples a land-usebased export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major landuse categories as stream nitrogen sources in each subcatchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TNretention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L-1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.


Assuntos
Modelos Teóricos , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Agricultura , Teorema de Bayes , China , Monitoramento Ambiental , Abastecimento de Água
17.
Sci Total Environ ; 904: 167047, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716679

RESUMO

Biochar production and its soil sequestration are promising ways to mitigate global warming. Effects of biochar on soil CO2, CH4 and N2O release have been studied extensively. In contrast, few studies have comprehensively quantified and synthesized the effect of biochar on soil greenhouse gas (GHG) emission and coupled it to the calculation of carbon sequestration potential. This study obtained the influence coefficient of biochar on soil GHG release relative to biochar carbon storage potential in soils under different environmental conditions, by literature statistics and data transformations. Our results showed that the overall average effect of biochar on soil CO2, CH4, N2O and CO2e release observed in our databases would compensate the potential of biochar soil carbon storage by -2.1 ± 3.3 %, 13.1 ± 9.8 %, -1.6 ± 8.6 % and 5.3 ± 11.4 %, respectively. By combining biochar induced soil GHG emission reduction mechanism and results from our literature statistics, some specific application environmental scenarios (such as biochar with high pyrolysis temperature of 500-600 °C, application in flooded soils, application in straw-return scenarios, etc.) were recommended, which could increase the actual carbon sequestration potential of biochar by an average of about 43.3 ± 30.2 % relative the amount of carbon buried. Our findings provide a scientific basis for developing a precise application strategy towards large scale adoption of biochar as a soil amendment for climate change mitigation.

18.
Huan Jing Ke Xue ; 44(7): 3913-3922, 2023 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-37438290

RESUMO

A quantitative understanding of cropland nitrogen (N) runoff loss is critical for developing efficient N pollution control strategies. Using correlation analysis, a structural equation model, variance decomposition, and machine learning methods, this study identified the primary influencing factors of total N (TN) runoff loss from uplands (n=570) and paddy (n=434) fields in the Yangtze River Basin (YRB) and then developed a machine learning-based prediction model to quantify cropland N runoff loss load. The results indicated that runoff depth, soil N content, and fertilizer addition rate were the major influencing factors of TN runoff loss from uplands, whereas TN runoff loss rate from paddy fields was mainly regulated by runoff depth and fertilizer addition rate. Among the four used machine learning methods, the prediction models based on the random forest algorithm presented the highest accuracy (R2=0.65-0.94) for predicting upland and paddy field TN runoff loss rates. The random forest algorithm based model estimated a total cropland TN loss load in the YRB of 0.47 Tg·a-1 (upland:0.25 Tg·a-1; paddy field:0.22 Tg·a-1) in 2013, with 58% of TN runoff loss load derived from the midstream and downstream regions. The models predicted that TN runoff loss loads from croplands in YRB would decrease by 2.4%-9.3% for five scenarios, with higher TN load reductions occurring from scenarios with decreased runoff amounts. To mitigate cropland N nonpoint source pollution in YRB, it is essential to integrate efficient water, fertilizer, and soil nutrient managements as well as to consider the midstream and downstream regions as the high priority area. The machine learning-based modeling method developed in this study overcame the difficulty of identifying the functional relationships between cropland TN loss rate and multiple influencing factors in developing relevant prediction models, providing a reliable method for estimating regional and watershed cropland TN loss load.

19.
Environ Sci Pollut Res Int ; 30(8): 19873-19889, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36242662

RESUMO

Increasing evidence indicates that groundwater can contain high dissolved phosphorus (P) concentrations, thereby contributing as a potential pollution source for surface waters. However, limited quantitative knowledge is available concerning groundwater P fluxes to rivers. Based on monthly hydrochemical monitoring data for rivers and groundwater in 2017-2020, this study combined baseflow separation methods and a load apportionment model (LAM) to quantify contributions from point sources, surface runoff, and groundwater/subsurface runoff to riverine P pollution in a typical agricultural watershed of eastern China. In the studied Shuanggang River, most total P (TP) and dissolved P (DP) concentrations exceeded targeted water quality standards (i.e., TP ≤ 0.2 mg P L-1, DP ≤ 0.05 mg P L-1), with DP (76 ± 20%) being the major riverine P form. Observed DP concentrations in groundwater were generally higher than those of river waters. There was a strong correlation between river and groundwater P concentrations, implying that groundwater might be a considerable P pollution source to rivers. The nonlinear reservoir algorithm estimated that baseflow/groundwater contributed 66-68% of monthly riverine water discharge on average, which was consistent with results estimated by an isotope-based sine-wave fitting method. The LAM incorporating point sources, surface runoff, and groundwater effectively predicted daily riverine TP [calibration: coefficient of determination (R2) = 0.76-0.82, Nash-Sutcliffe Efficiency (NSE) = 0.61-0.77; validation: R2 = 0.88-0.98, NSE = 0.54-0.64] and DP loads (calibration: R2 = 0.73-0.84, NSE = 0.67-0.72; validation: R2 = 0.88-0.97, NSE = 0.56-0.83). The LAM estimated point source, surface runoff, and groundwater contributions to riverine loads were 15-18%, 14-35%, and 46-70% for TP loads and 7-9%, 10-32%, and 59-82% for DP loads, respectively. Groundwater was the dominant riverine P source due to long-term accumulation of P from excess fertilizer and farmyard manure applications. The developed methodology provides an alternative method for quantifying P pollution loads from point sources, surface runoff, and groundwater to rivers. This study highlights the importance of controlling groundwater P pollution from agricultural lands to address riverine water quality objectives and further implies that decreasing fertilizer P application rates and utilizing legacy soil P for crop uptake are required to reduce groundwater P loads to rivers.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Rios , Poluentes Químicos da Água/análise , Nitrogênio/análise , Fósforo/análise , Fertilizantes , Monitoramento Ambiental/métodos , China , Qualidade da Água
20.
Chemosphere ; 343: 140253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741373

RESUMO

In this study, Cu hybridization coupling oxygen defect engineering was adopted to synthesis of CuNiFe layered double oxides (CuNiFe-LDOs) in peroxymonosulfate (PMS) activation for degradation of methyl 4-hydroxybenzoate. The morphology and crystal structure of CuNiFe-LDOs was characterized in detail, which exhibited regular layered-structure at a Cu:Ni doping ratio of 1:1 and annealing temperature of 400 °C, and presented the crystal of CuxO@Fe3O4-NiO. Besides, the X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) results demonstrated that abundant oxygen vacancies (OVs) and low oxidation state Cu species were composed in CuNiFe-LDOs400. The Cu1·5Ni1·5Fe1-LDOs400/PMS system showed excellent catalytic performance toward the degradation of butyl 4-hydroxybenzoate (BuP), and resistant to the effect of pH value and background inorganic anions. Based on quenching experiments and EPR measurements, singlet oxygen (1O2) was identified as the dominant active species during the heterogeneous catalytic process, which was generated by the synergistic interaction between OVs-Cu(I) site and PMS. In this process, the electron-drawing property of OVs promoted the adsorption of PMS molecule on Cu(I) site, followed by the accumulation of electron and cleavage of O-O bond to generate intermediate oxygen radical species, which donated one electron to eventually generate singlet oxygen.


Assuntos
Óxidos , Oxigênio , Oxigênio Singlete , Peróxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA