RESUMO
N-methyl-d-aspartate receptors (NMDARs) at hippocampal excitatory synapses undergo a late postnatal shift in subunit composition, from an initial prevalence of GluN2B subunit incorporation to a later predominance of GluN2A. This GluN2B to GluN2A shift alters NMDAR calcium conductance dynamics and intracellular molecular signaling that are individually regulated by distinct GluN2 signaling domains and temporally align with developmental alterations in dendritic and synaptic plasticity. However, the impacts of individual GluN2B to GluN2A signaling domains on neuronal development remain unknown. Ionotropic and intracellular signaling domains of GluN2 subunits were separated by creating chimeric GluN2 subunits that were expressed in two transgenic mouse lines. Western blot and immunoprecipitation revealed that roughly one third of native synaptic NMDARs were replaced by transformed NMDARs without altering total synaptic NMDAR content. Schaffer collateral synaptic strength was transiently increased in acutely prepared hippocampal slices at just over 3 weeks of age in animals overexpressing the GluN2B carboxy terminus. Long-term potentiation (LTP) induction following lower frequency stimulation was regulated by GluN2 ionotropic signaling domains in an age-dependent manner and LTP maintenance was enhanced by overexpression of the GluN2B CTD in mature animals. After higher frequency stimulation, the induction and maintenance of LTP were increased in young adult animals overexpressing the GluN2B ionotropic signaling domains but reduced in juveniles just over 3 weeks of age. Confocal imaging of green fluorescent protein (GFP)- labeled CA1 pyramidal neurons revealed no alterations in dendritic morphology or spine density in mice expressing chimeric GluN2 subunits. These results illustrate how individual GluN2 subunit signaling domains do or do not control physiological and morphological development of hippocampal excitatory neurons and better clarify the neurobiological factors that govern hippocampal maturation. SIGNIFICANCE STATEMENT: A developmental reduction in the magnitude of hippocampal long-term synaptic potentiation (LTP) and a concomitant improvement in spatial maze performance coincide with greater incorporation of GluN2A subunits into synaptic NMDARs. Corroborating our prior discovery that overexpression of GluN2A-type ionotropic signaling domains enables context-based navigation in immature mice, GluN2A-type ionotropic signaling domain overexpression reduces LTP induction threshold and magnitude in immature mice. Also, we previously found that GluN2B carboxy terminal domain (CTD) overexpression enhances long-term spatial memory in mature mice and now report that the GluN2B CTD is associated with greater amplitude of LTP after induction in mature mice. Thus, the late postnatal maturation of context encoding likely relies on a shift toward GluN2A-type ionotropic signaling and a reduction in the threshold to induce LTP while memory consolidation and LTP maintenance are regulated by GluN2B subunit CTD signaling.
Assuntos
Dendritos , Hipocampo , Camundongos Transgênicos , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Hipocampo/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Dendritos/fisiologia , Dendritos/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Transmissão Sináptica/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , MasculinoRESUMO
Remarkable performance improvements occur at the end of the third postnatal week in rodents tested in various tasks that require navigation according to spatial context. While alterations in hippocampal function at least partially subserve this cognitive advancement, physiological explanations remain incomplete. Previously, we discovered that developmental modifications to hippocampal glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in juvenile rats was related to more mature spontaneous alternation behavior in a symmetrical Y-maze. Moreover, a positive allosteric modulator of AMPA receptors enabled immature rats to alternate at rates seen in older animals, suggesting an excitatory synaptic limitation to hippocampal maturation. We then validated the Barnes maze for juvenile rats in order to test the effects of positive AMPA receptor modulation on a goal-directed spatial memory task. Here we report the effects of the AMPA receptor modulator, CX614, on spatial learning and memory in the Barnes maze. Similar to our prior report, animals just over 3 weeks of age display substantial improvements in learning and memory performance parameters compared to animals just under 3 weeks of age. A moderate dose of CX614 enabled immature animals to move more directly to the goal location, but only after 1 day of training. This performance improvement was observed on the second day of training with drug delivery or during a memory probe trial performed without drug delivery after the second day of training. Higher doses created more search errors, especially in more mature animals. Overall, CX614 provided modest performance benefits for immature rats in a goal-directed spatial memory task.
Assuntos
Receptores de AMPA , Aprendizagem Espacial , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Memória Espacial , CogniçãoRESUMO
In order to accurately diagnose the fault type of power transformer, this paper proposes a transformer fault diagnosis method based on the combination of time-shift multiscale bubble entropy (TSMBE) and stochastic configuration network (SCN). Firstly, bubble entropy is introduced to overcome the shortcomings of traditional entropy models that rely too heavily on hyperparameters. Secondly, on the basis of bubble entropy, a tool for measuring signal complexity, TSMBE, is proposed. Then, the TSMBE of the transformer vibration signal is extracted as a fault feature. Finally, the fault feature is inputted into the stochastic configuration network model to achieve an accurate identification of different transformer state signals. The proposed method was applied to real power transformer fault cases, and the research results showed that TSMBE-SCN achieved 99.01%, 99.1%, 99.11%, 99.11%, 99.14% and 99.02% of the diagnostic rates under different folding numbers, respectively, compared with conventional diagnostic models MBE-SCN, TSMSE-SCN, MSE-SCN, TSMDE-SCN and MDE-SCN. This comparison shows that TSMBE-SCN has a strong competitive advantage, which verifies that the proposed method has a good diagnostic effect. This study provides a new method for power transformer fault diagnosis, which has good reference value.
RESUMO
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.
RESUMO
The harmonics exacerbated by the integration of distributed energy such as wind power has been extensively studied. However, the interaction and propagation mechanism between harmonic sources in the hydro-wind complementary generation system are still not clear. To tackle this challenge, the presented study establishes the hydro-wind complementary generation system model and explores the harmonics propagation and interaction in all components. Then three operation mode of complementary system (scenario 1: stand-alone Hydroelectric Generating System, scenario 2: stand-alone Wind Farm (WF) and scenario 3: complementary generation system) are selected. The results demonstrate that the integration of HGS diminishes the harmonic at DFIG side but at the grid side. In complementary generation system, the THDu rises but the corresponding THDi declines due to the regulation of power grid. Furthermore, the odd harmonics interactions analysis reveal that the doubly-fed induction generator's (DFIG) side and the stator's side are the two high-risk sources in the complementary generation process. The presented results provide a basis for power quality evaluation of hydro-wind complementary generation system.
RESUMO
This paper investigates a backstepping sliding mode fault-tolerant tracking control problem for a hydro-turbine governing system with consideration of external disturbances, actuator faults and dead-zone input. To reduce the effects of the unknown random disturbances, the nonlinear disturbance observer is designed to identify and estimate the disturbance term. To drastically decrease the complexity of stability functions selection and controller design, the recursive processes of the backstepping technique are employed. Additionally, based on the nonlinear disturbance observer and the backstepping technique, the sliding mode fault-tolerant tracking control approach is developed for the hydro-turbine governing system (HTGS). The stability of HTGS is rigorously demonstrated through Lyapunov analysis which is capable to satisfy a tracking control performance. Finally, comprehensive simulation results are presented to illustrate the effectiveness and superiority of the proposed control scheme.