Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938086

RESUMO

BACKGROUND: Gestational hypertension, often associated with elevated soluble Fms-related receptor tyrosine kinase 1 (sFlt-1), poses significant risks to both maternal and fetal health. Hydrogen sulfide (H2S), a gasotransmitter, has demonstrated blood pressure-lowering effects in hypertensive animals and humans. However, its role in pregnancy-induced hypertension remains unclear. OBJECTIVE: This study aimed to investigate the impact of GYY4137, a slow-release H2S donor, on sFlt-1-induced hypertension in pregnant rats and examine the underlying mechanisms. METHODS: Pregnant rats were administered sFlt-1 (6 µg/kg/day, intravenously) or vehicle from gestation day (GD) 12 to 20. A subset of these groups received GYY4137 (an H2S donor, 50 mg/kg/day, subcutaneously) from GD 16 to 20. Serum H2S levels, mean arterial blood pressure (CODA tail-cuff), uterine artery blood flow (ultrasonography), vascular reactivity to vasopressors and endothelial-dependent relaxation (myography), endothelial nitric oxide synthase (eNOS) protein expression in uterine arteries (Western blotting) were assessed. In addition, maternal weight gain, as well as fetal and placental weights, were measured. RESULTS: Elevated sFlt-1 reduced both maternal weight gain and serum H2S levels. GYY4137 treatment restored both weight gain and H2S levels in sFlt-1 dams. sFlt-1 increased mean arterial pressure and decreased uterine artery blood flow in pregnant rats. However, treatment with GYY4137 normalized blood pressure and restored uterine blood flow in sFlt-1 dams. sFlt-1 dams exhibited heightened vasoconstriction to phenylephrine and GYY4137 significantly mitigated the exaggerated vascular contraction. Notably, sFlt-1 impaired endothelium-dependent relaxation, while GYY4137 attenuated this impairment by upregulating eNOS protein levels and enhancing vasorelaxation in uterine arteries. GYY4137 mitigated sFlt-1-induced fetal growth restriction. CONCLUSION: sFlt-1 mediated hypertension is associated with decreased H2S levels. Replenishing H2S with the donor GYY4137 mitigates hypertension and improves vascular function and fetal growth outcomes. This suggests modulation of H2S could offer a novel therapeutic strategy for managing gestational hypertension and adverse fetal effects.

2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762687

RESUMO

Endogenous hydrogen sulfide (H2S) produced by cystathionine ß-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2ß (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2ß tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2ß-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.


Assuntos
Cistationina beta-Sintase , Fulvestranto , Sulfeto de Hidrogênio , Animais , Feminino , Gravidez , Ratos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Estrogênios/metabolismo , Fulvestranto/farmacologia , Sulfeto de Hidrogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Artéria Uterina/metabolismo
3.
Reprod Domest Anim ; 56(1): 142-152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33174231

RESUMO

The aims of the present study were to determine uterine, vaginal and placental blood flows by Doppler ultrasound cross-buffalo gestation and to evaluate the relationships among reproductive Doppler parameters and serum metabolic parameters as well as oxidative stress. Uterine (UA) and vaginal (VA) arteries were scanned every month, and placentome was scanned from month 4 till 8 in gestation. Time-averaged maximum velocity (TAMV), pulsatility index (PI), resistance index (RI), systolic/diastolic ratio (SD) and arterial diameter (AD) were used for accessing UA and VA hemodynamics. Time-averaged maximum velocity positively correlated with and AD, and both negatively correlated with their PI, RI and SD in UA and VA. TAMV and AD increased constantly in pregnancy, with maximum increase in months 4 and 9. Pulsatility index, RI and AD of UA decreased between months 4 and 9, while PI, RI and AD of VA decreased between months 5 and 9 and then increased in month 10 in pregnancy. Time-averaged maximum velocity of placentome blood flow increased exponentially from months 4 to 8, but decreased at the last two months in pregnancy. Serum lipids were significantly higher in the first month compared to all other months, while glucose was significantly lower in months 9 and 10. Malondialdehyde increased from month 3 till term, but peaked in month 5 and 10. Glutathione and catalase were highest in the first month and remained after. Time-averaged maximum velocity and AD for both UA and VA negatively correlated with serum lipids, glucose, catalase and glutathione, while positively correlated with malondialdehyde and total protein. Thus, increases in uterine blood flow (UtBF), vaginal blood flow (VaBF) and placental blood flow (PaBF) are associated with increased metabolism and oxidative stress in buffalo pregnancy.


Assuntos
Velocidade do Fluxo Sanguíneo/veterinária , Búfalos/fisiologia , Estresse Oxidativo , Gravidez/fisiologia , Animais , Glicemia , Búfalos/sangue , Búfalos/metabolismo , Feminino , Hemodinâmica , Lipídeos/sangue , Circulação Placentária , Ultrassonografia Doppler/veterinária , Útero/irrigação sanguínea , Vagina/irrigação sanguínea
4.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570961

RESUMO

Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal-fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERß) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a "new" UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.


Assuntos
Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Artéria Uterina/patologia , Epigênese Genética , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , Receptores de Estrogênio/genética , Artéria Uterina/metabolismo , Vasodilatação
5.
J Cell Physiol ; 234(6): 9264-9273, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317617

RESUMO

Endogenous hydrogen sulfide (H2 S), synthesized by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE), is a potent vasodilator that can be stimulated by estradiol-17ß (E 2 ß) in uterine artery (UA) smooth muscle (UASMC) in vivo; however, the underlying mechanisms are unknown. This study tested a hypothesis that E 2 ß stimulates H 2 S biosynthesis by upregulating CBS expression via specific estrogen receptor (ER). Treatment with E 2 ß stimulated time- and concentration- dependent CBS and CSE messenger RNA (mRNA) and protein expressions, and H 2 S production in cultured primary UASMC isolated from late pregnant ewes, which were blocked by ICI 182,780. Treatment with specific ERα or ERß agonist mimicked these E 2 ß-stimulated responses, which were blocked by specific ERα or ERß antagonist. Moreover, E 2 ß activated both CBS and CSE promoters and ICI 182,780 blocked the E 2 ß-stimulated responses. Thus, E 2 ß stimulates H 2 S production by upregulating CBS and CSE expression via specific ER-dependent transcription in UASMC in vitro.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Estradiol/farmacologia , Sulfeto de Hidrogênio/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Estrogênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Artéria Uterina/citologia , Animais , Células Cultivadas , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Miócitos de Músculo Liso/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos
6.
Biol Reprod ; 100(2): 495-504, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137221

RESUMO

Pregnancy is a physiologic state of substantially elevated estrogen biosynthesis that maintains vasodilator production by uterine artery endothelial cells (P-UAECs) and thus uterine perfusion. Estrogen receptors (ER-α and ER-ß; ESR1 and ESR2) stimulate nongenomic rapid vasodilatory responses partly through activation of endothelial nitric oxide synthase (eNOS). Rapid estrogenic responses are initiated by the ∼4% ESRs localized to the plasmalemma of endothelial cells. Caveolin-1 (Cav-1) interactions within the caveolae are theorized to influence estrogenic effects mediated by both ESRs. Hypothesis: Both ESR1 and ESR2 display similar spatial partitioning between the plasmalemma and nucleus of UAECs and have similar interactions with Cav-1 at the plasmalemma. Using transmission electron microscopy, we observed numerous caveolae structures in UAECs, while immunogold labeling and subcellular fractionations identified ESR1 and ESR2 in three subcellular locations: membrane, cytosol, and nucleus. Bioinformatics approaches to analyze ESR1 and ESR2 transmembrane domains identified no regions that facilitate ESR interaction with plasmalemma. However, sucrose density centrifugation and Cav-1 immunoisolation columns uniquely demonstrated very high protein-protein association only between ESR1, but not ESR2, with Cav-1. These data demonstrate (1) both ESRs localize to the plasmalemma, cytosol and nucleus; (2) neither ESR1 nor ESR2 contain a classic region that crosses the plasmalemma to facilitate attachment; and (3) ESR1, but not ESR2, can be detected in the caveolar subcellular domain demonstrating ESR1 is the only ESR bound in close proximity to Cav-1 and eNOS within this microdomain. Lack of protein-protein interaction between Cav-1 and ESR2 demonstrates a novel independent association of these proteins at the plasmalemma.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Ovinos , Animais , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos
7.
Biol Reprod ; 100(6): 1630-1636, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772913

RESUMO

Uterine vasodilation dramatically increases during the follicular phase of the estrous cycle and pregnancy, which are estrogen-dominant physiological states. Uterine vasodilation is believed to be mainly controlled by local uterine artery (UA) production of vasodilators and angiogenic factors. The extremely potent vasodilator and proangiogenic hydrogen sulfide (H2S) is synthesized via metabolizing L-cysteine by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH). This study was designed to determine if UA H2S production increases with augmented expression and/or activity of CBS and/or CTH during the ovarian cycle and pregnancy in sheep. Uterine arteries from intact nonpregnant (NP) luteal and follicular phase and late (130-135 days, term ≈ 145 days) pregnant (P) ewes were collected; endothelium-enriched proteins (UAendo) and endothelium-denuded smooth muscle (UAvsm) were mechanically prepared for accessing CBS and CTH proteins by immunoblotting; their cellular localization was determined by semi-quantitative immunofluorescence microscopy. H2S production was measured by the methylene blue assay. Immunoblotting revealed that CBS but not CTH protein was greater in P > > > NP follicular > luteal UAendo and UAvsm (P < 0.001). H2S production was greater in P > > > NP UAendo and UAvsm (P < 0.01). Pregnancy-augmented UAendo and UAvsm H2S production was inhibited by the specific CBS but not CTH inhibitor. CBS and CTH proteins were localized to both endothelium and smooth muscle; however, only CBS protein was significantly greater in P vs NP UA endothelium and smooth muscle. Thus, ovine UA H2S production is significantly augmented via selectively upregulating endothelium and smooth muscle CBS during the follicular phase and pregnancy in vivo.


Assuntos
Ciclo Estral/fisiologia , Sulfeto de Hidrogênio/metabolismo , Prenhez , Ovinos/metabolismo , Artéria Uterina/metabolismo , Animais , Feminino , Idade Gestacional , Ovário/fisiologia , Gravidez , Prenhez/fisiologia , Vasodilatação/fisiologia
8.
Biol Reprod ; 100(2): 514-522, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277497

RESUMO

Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger synthesized from L-cysteine by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH). Estrogens are potent vasodilators that stimulate H2S biosynthesis in uterine arteries (UA) in vivo; however, the underlying mechanisms are unknown. We hypothesized that estrogens stimulate H2S biosynthesis in UA endothelial cells (UAEC) via specific estrogen receptor (ER)-dependent mechanisms. In cultured primary UAEC, treatment with estradiol-17ß (E2ß) stimulated CBS and CTH mRNAs and proteins in a time- and concentration-dependent fashion. As little as 0.1 nM E2ß was effective in increasing CBS and CTH expressions and these stimulatory effects maximized with 10-100 nM E2ß at 48-72 h. E2ß also activated CBS and CTH promoters in UAEC, leading to CBS and CTH expression. Treatment with E2ß stimulated H2S production, which was blocked by specific inhibitors of either CBS or CTH and their combination and the ER antagonist ICI 182780. Treatment with either specific agonist of ERα or ERß stimulated both CBS and CTH mRNA and protein expressions and H2S production to levels similar to that of E2ß. Specific antagonist of either ERα or ERß blocked E2ß-stimulated CBS and CTH mRNA and protein expressions and H2S production. Combinations of either ERα or ERß agonists or their antagonists had no additive effects. Thus, E2ß stimulates H2S production by upregulating CBS and CTH mRNA and protein expressions through specific ERα or ERß-dependent CBS and CTH transcription in UAEC in vitro.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Células Endoteliais/efeitos dos fármacos , Estradiol/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ovinos , Animais , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Relação Dose-Resposta a Droga , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Artéria Uterina/citologia , Útero/irrigação sanguínea
9.
Proc Natl Acad Sci U S A ; 113(12): 3197-202, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951653

RESUMO

Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications.


Assuntos
Cromossomos Humanos X , Impressão Genômica , Razão de Masculinidade , Inativação do Cromossomo X , Feminino , Fertilização in vitro , Humanos
10.
Biol Reprod ; 98(6): 846-855, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506130

RESUMO

Experimental evidence shows that parental psychological stress affects the long-term health of offspring in an inheritable fashion. Although epigenetic mechanisms, including DNA methylation, miRNA, and histone modifications, are involved in transgenerational programming, the underlining mechanisms of transgenerational inheritance remain unsolved. Here, we present a single-cell-based computational model for transgenerational inheritance for investigating the long-term dynamics of phenotype changes in response to parental stress. The model is based on a recent study that has identified the imprinted sperm gene Sfmbt2 as a key target, and incorporates crosstalks among drastically different time scales in mammalian development, including DNA methylation, transcription, cell division, and population dynamics. Computational analysis of the model suggests a positive feedback to DNA methylation in the promoter region of sperm Sfmbt2 gene that provides a possible mechanism to mediate the parental psychological stress reprogramming in offspring. This approach provides a modeling framework for the understanding of the roles that epigenetics play in transgenerational inheritance.


Assuntos
Epigênese Genética , Desenvolvimento Fetal/fisiologia , Regiões Promotoras Genéticas , Espermatozoides/metabolismo , Estresse Psicológico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Metilação de DNA , Pai , Masculino , Camundongos , Modelos Biológicos , Proteínas Repressoras , Estresse Psicológico/genética , Fatores de Transcrição/genética
11.
Biol Reprod ; 97(3): 478-489, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024947

RESUMO

Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (ß-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1.


Assuntos
Indutores da Angiogênese/farmacologia , Artérias/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Placenta/irrigação sanguínea , Trofoblastos/química , Animais , Artérias/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/biossíntese , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/biossíntese , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ovinos
12.
Biol Reprod ; 96(3): 664-672, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339573

RESUMO

Endogenous hydrogen sulfide (H2S) synthesized via metabolizing L-cysteine by cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE) is a potent vasodilator and angiogenic factor. The objectives of this study were to determine if human uterine artery (UA) H2S production increases with augmented expression and/or activity of CBS and/or CSE during the menstrual cycle and pregnancy and whether exogenous H2S dilates UA. Uterine arteries from nonpregnant (NP) premenopausal proliferative (pPRM) and secretory (sPRM) phases of the menstrual cycle and pregnant (P) women were studied. H2S production was measured by the methylene blue assay. CBS and CSE mRNAs were assessed by quantitative real-time PCR, and proteins were assessed by immunoblotting and semiquantitative immunofluorescence microscopy. Effects of H2S on rat UA relaxation were determined by wire myography ex vivo. H2S production was greater in NP pPRM and P than NP sPRM UAs and inhibited by the specific CBS but not CSE inhibitor. CBS but not CSE mRNA and protein were greater in NP pPRM and P than NP sPRM UAs. CBS protein was localized to endothelium and smooth muscle and its levels were in a quantitative order of P >NP UAs of pPRM>sPRM. CSE protein was localized in UA endothelium and smooth muscle with no difference among groups. A H2S donor relaxed P > NP UAs but not mesentery artery. Thus, human UA H2S production is augmented with endothelium and smooth muscle CBS upregulation, contributing to UA vasodilation in the estrogen-dominant physiological states in the proliferative phase of the menstrual cycle and pregnancy.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ciclo Menstrual/metabolismo , Gravidez/metabolismo , Artéria Uterina/metabolismo , Adulto , Endotélio Vascular/metabolismo , Estrogênios/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Vasodilatação
14.
Biol Reprod ; 94(5): 114, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27075618

RESUMO

Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis.


Assuntos
Marcação por Isótopo/métodos , Nitratos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Aminoácidos/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Nitrosação/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Ovinos , Espectrometria de Massas em Tandem/métodos
15.
J Cell Physiol ; 230(2): 406-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25056928

RESUMO

Nitric oxide (NO) derived from endothelial NO synthase (eNOS) mediates vascular endothelial growth factor (VEGF)-stimulated endothelial cytoskeleton remodeling and migration; however, the underlying mechanisms are elusive. Covalent adduction of a NO moiety (NO(•)) to cysteines called S-nitrosylation (SNO) is a key NO signaling pathway. The small actin-binding protein cofilin-1 (CFL1) is essential for actin cytoskeleton remodeling. We investigated whether S-nitrosylation regulates CFL1 function and endothelial cytoskeleton remodeling and migration upon VEGF stimulation. VEGF rapidly stimulated S-nitrosylation of CFL1, which was blocked by NO Synthase inhibition and eNOS knockdown by specific eNOS-siRNA. Cys80 and Cys139 were identified as the major SNO-sites in CFL1 by LC-MS/MS. The actin severing activity of recombinant SNO-mimetic CFL1 (C80/139A DMA-CFL1), but not SNO-deficient CFL1 (C80/139S DMS-CFL1), was significantly greater than that of wild-type CFL1 (wt-CFL1). When wt-CFL1 and its mutants were overexpressed in endothelial cells, basal actin bound wt-CFL1 was undetectable but significantly increased by VEGF; basal actin bound DMA-CFL1 was readily high and basal actin bound DMS-CFL1 was detectable but low, and both were unresponsive to VEGF. Treatment with VEGF significantly increased filamentous (F-) actin and filopodium formation and cell migration in endothelial cells. Overexpression of wt-CFL1 inhibited VEGF-induced F-actin formation. Overexpression of DMA but not DMS CFL1 decreased basal but not VEGF-stimulated F-actin formation. Overexpression of DMA but not DMS CFL1 suppressed VEGF-stimulated filopodium formation and migration in endothelial cells. Thus, S-nitrosylation of CFL1 provides a novel signaling pathway post-NO biosynthesis via eNOS-derived NO for endothelial cytoskeleton remodeling and migration upon VEGF stimulation.


Assuntos
Movimento Celular , Cofilina 1/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Actinas/metabolismo , Células Cultivadas , Humanos , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
Microcirculation ; 21(1): 15-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23981199

RESUMO

Ample interest has been evoked in using placental angiogenesis as a target for the development of diagnosis tools and potential therapeutics for pregnancy complications based on the knowledge of placental angiogenesis in normal and aberrant pregnancies. Although these goals are still far from reach, one would expect that two complementary processes should be balanced for therapeutic angiogenesis to be successful in restoring a mature and functional vascular network in the placenta in any pregnancy complication: (i) pro-angiogenic stimulation of new vessel growth and (ii) anti-angiogenic inhibition of vessel overgrowth. As the best model of physiological angiogenesis, investigations of placental angiogenesis provide critical insights not only for better understanding of normal placental endothelial biology but also for the development of diagnosis tools for pregnancy complications. Such investigations will potentially identify novel pro-angiogenic factors for therapeutic intervention for tissue damage in various obstetric complications or heart failure or anti-angiogenic factors to target on cancer or vision loss in which circulation needs to be constrained. This review summarizes the genetic and molecular aspects of normal placental angiogenesis as well as the signaling mechanisms by which the dominant angiogenic factor vascular endothelial growth factor regulates placental angiogenesis with a focus on placental endothelial cells.


Assuntos
Células Endoteliais , Neovascularização Patológica , Neovascularização Fisiológica , Placenta , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Placenta/fisiopatologia , Gravidez
17.
Biol Reprod ; 88(5): 130, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23575145

RESUMO

MicroRNAs are a class of noncoding small RNAs that regulate the expression of nearly 30% of all the human genes and participate in all fundamental cell processes. Genome-wide analysis has revealed that human placenta expresses more than 600 miRNA species, including placenta-specific ones with high levels of expression. Comparative analysis also has revealed many differentially expressed miRNAs with either high or low levels of expression in human placentas from normal versus preeclamptic pregnancies, indicating an important role of miRNAs in normal and pathological placental physiology. Although limited information is currently available as to how miRNA regulates human placental development and function, there are studies suggesting that preeclampsia-associated differentially expressed miRNAs possess critical roles in regulating placental development and function via targeting specific genes with diverse known functions. Herein we summarize the current findings regarding the expression of placental miRNAs and their function, especially in the trophoblast cells. We have recently found that the angiogenesis-associated miR-17-family miRNAs are upregulated in preeclamptic compared with normotensive placentas and they target the ephrin-B2/Eph receptor B4 (EPHB4) system. Because ephrin-B2 and EPHB4 has been previously shown to play a crucial role in trophoblast invasion into maternal spiral artery and vascular patterning during early human placental development, the miR-17-ephrin-B2/EPHB4 pathway seems to be a novel miRNA pathway for regulating normal and aberrant placental development during preeclampsia.


Assuntos
MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Feminino , Humanos , MicroRNAs/genética , Placentação/fisiologia , Pré-Eclâmpsia/genética , Gravidez
18.
Biol Reprod ; 88(5): 114, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23536375

RESUMO

Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.


Assuntos
Adaptação Fisiológica/fisiologia , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/farmacologia
19.
Biol Reprod ; 89(6): 133, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152727

RESUMO

Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.


Assuntos
Células Endoteliais/metabolismo , Circulação Placentária/genética , Transcriptoma , Artérias Umbilicais/metabolismo , Hipóxia Celular/genética , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Análise em Microsséries , Oxigênio/farmacologia , Gravidez , Estresse Fisiológico/genética , Fatores de Tempo , Artérias Umbilicais/citologia
20.
Obstet Gynecol Res ; 6(4): 309-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288009

RESUMO

Hydrogen sulfide (H2S) is a cardiovascular signaling molecule that causes vasodilation in vascular smooth muscle cells, but its mechanism is unclear. We examined how H2S affects mesenteric and uterine arteries without endothelium in nonpregnant and pregnant rats and the underlying mechanisms. H2S donors GYY4137 and NaHS relaxed uterine arteries more than mesenteric arteries in both pregnant and nonpregnant rats. GYY4137 and NaHS caused greater relaxation in the uterine artery of pregnant versus nonpregnant rats. High extracellular K+ abolished NaHS relaxation in pregnant uterine arteries, indicating potassium channel involvement. NaHS relaxation was unaffected by voltage-gated potassium channel blockers, reduced by ATP-sensitive potassium channel blockers, and abolished by calcium-activated potassium (BKCa) channel blockers. Thiol-reductant dithiothreitol also prevented NaHS relaxation. Thus, H2S has region-specific and pregnancy-enhanced vasodilator effects in the uterine arteries, mainly mediated by BKCa channels and sulfhydration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA