Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463002

RESUMO

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Bactérias/metabolismo , Biomassa
2.
J Environ Manage ; 328: 116973, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525735

RESUMO

Microalgae appear to be a promising and ecologically safe way for nutrients removal from rare earth tailings (REEs) wastewater with CO2 fixation and added benefits of resource recovery and recycling. In this study, a pilot scale (50 L) co-flocculating microalgae photobioreactor (Ma-PBR) as constructed and operated for 140 days to treat REEs wastewater with low C/N ratio of 0.51-0.56. The removal rate of ammonia nitrogen (NH4+-N) reached 88.04% and the effluent residual concentration was as low as 9.91 mg/L that have met the Emission Standards of Pollutants from Rare Earths Industry (GB 26451-2011). Timely supplementation of trace elements was necessary to maintain the activity of microalgae and then prolonged the operation time. The dominant phyla in co-flocculating microalgae was Chlorophyta, the relative abundance of which was higher than 80%. Tetradesmus belonging to Chlorophyceae was the dominant genus with relative abundance of 80.35%. The results provided a practical support for the scaling-up of Ma-PBR to treat REEs wastewater.


Assuntos
Metais Terras Raras , Microalgas , Águas Residuárias , Fotobiorreatores , Projetos Piloto , Biomassa , Nitrogênio
3.
Bioresour Technol ; 410: 131293, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153688

RESUMO

Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.


Assuntos
Hidrodinâmica , Microalgas , Nitrogênio , Fotobiorreatores , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Simulação por Computador , Biomassa , Luz , Fotoperíodo
4.
Bioresour Technol ; 367: 128304, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370947

RESUMO

Microalgae-bacteria symbiosis system (MBS) appear to be a promising way for treating the rare earth elements (REEs) wastewater due to the natural symbiotic interactions between microalgae and bacteria. Herein, we investigated the effect of different inoculation ratios of microalgae and bacteria including 3:1 (MB_1), 1:1 (MB_2) and 1:3 (MB_3) on NH4+-N removal from REEs wastewater and analyzed the corresponding biological mechanism. The NH4+-N removal rate with MB_3 reached 17.69 ± 0.45 mg NH4+-N/L d-1, which was 2.58 times higher than that in single microalgae system. The results were further verified in continuous feeding photobioreactors and kept stable for 100 days. Metagenomic analysis revealed that the abundance of genes related to microalgae assimilation increased by 14 %-50 % in answer to photosynthesis and NH4+-N absorption, while that related to nitrification apparently dropped, indicating that MBS was a sustainable method capable of enhancing NH4+-N removal from REEs wastewater.


Assuntos
Microalgas , Águas Residuárias/microbiologia , Amônia , Simbiose , Desnitrificação , Nitrogênio/análise , Bactérias/genética , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA