Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 154-165, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986225

RESUMO

Asymmetric cell division (ACD) is a mechanism used by stem cells to maintain the number of progeny. However, the epigenetic mechanisms regulating ACD remain elusive. Here we show that BRD4, a BET domain protein that binds to acetylated histone, is segregated in daughter cells together with H3K56Ac and regulates ACD. ITGB1 is regulated by BRD4 to regulate ACD. A long noncoding RNA (lncRNA), LIBR (LncRNA Inhibiting BRD4), decreases the percentage of stem cells going through ACD through interacting with the BRD4 mRNAs. LIBR inhibits the translation of BRD4 through recruiting a translation repressor, RCK, and inhibiting the binding of BRD4 mRNAs to polysomes. These results identify the epigenetic regulatory modules (BRD4, lncRNA LIBR) that regulate ACD. The regulation of ACD by BRD4 suggests the therapeutic limitation of using BRD4 inhibitors to treat cancer due to the ability of these inhibitors to promote symmetric cell division that may lead to tumor progression and treatment resistance.


Assuntos
Proteínas que Contêm Bromodomínio , Divisão Celular , Epigênese Genética , RNA Longo não Codificante , Divisão Celular Assimétrica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas que Contêm Bromodomínio/metabolismo
2.
J Biol Chem ; 298(3): 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101449

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Assuntos
Aminoquinolinas , Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Internalização do Vírus/efeitos dos fármacos
3.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382727

RESUMO

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Lapatinib/farmacologia , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Dasatinibe/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteína Forkhead Box O3/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/efeitos dos fármacos , Análise em Microsséries , Subunidade p50 de NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
4.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8606, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31705576

RESUMO

RATIONALE: Glycosylation on immunoglobulins is important for the immune function. In this study, we developed and validated a method for the absolute quantification of IgA subclasses and relative quantification of IgA-Fc glycopeptides by using affinity purification and ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS). Only micro-volumes of plasma were required from each sample and we also applied the method to discover IgA and IgA-glycopeptide profiles in patients with chronic kidney diseases and IgA nephropathy. METHODS: Peptide M affinity beads were used to purify IgA, and a cost-effective peptide analogue was added as internal standard. With an efficient on-bead digestion process, purified samples were analyzed by UHPLC/MS/MS in multiple reaction monitoring mode. RESULTS: Correlation coefficients were greater than 0.999 for the IgA1 and IgA2 calibration curves and greater than 0.994 for glycopeptide regression curves. Intraday and interday precisions for IgA1 and IgA2 were <1.6% and <5.1% RSD, respectively. Intraday and interday accuracies ranged from 102.6 to 114.9% and 103.5 to 113.5% for IgA1 and IgA2, respectively. Stabilities of IgA1 and IgA2 at -80°C for 7 to 15 days ranged from 96.0 to 109.4%, respectively. The Pearson's correlation coefficient was 0.916 when comparing the IgA quantification results of the 30 clinical samples by using ELISAs and the developed UHPLC/MS/MS method. Compared with healthy controls, IgA and IgA-glycopeptides showed different profiles in patients with chronic kidney diseases and IgA nephropathy. CONCLUSIONS: The developed method showed good validation results, and the absolute quantification results of IgA correlated with those from ELISA. The pilot application study showed that IgA and IgA-glycopeptides can be potential biomarker candidates for kidney diseases, and more clinical sample applications are worth investigating.


Assuntos
Imunoglobulina A/sangue , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Glicosilação , Humanos , Imunoglobulina A/análise , Fragmentos Fc das Imunoglobulinas/análise , Fragmentos Fc das Imunoglobulinas/sangue , Limite de Detecção , Controle de Qualidade , Padrões de Referência , Espectrometria de Massas em Tandem/normas
5.
Nat Mater ; 15(1): 92-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26480228

RESUMO

The combination of both very high brightness and deep blue emission from phosphorescent organic light-emitting diodes (PHOLED) is required for both display and lighting applications, yet so far has not been reported. A source of this difficulty is the absence of electron/exciton blocking layers (EBL) that are compatible with the high triplet energy of the deep blue dopant and the high frontier orbital energies of hosts needed to transport charge. Here, we show that N-heterocyclic carbene (NHC) Ir(III) complexes can serve as both deep blue emitters and efficient hole-conducting EBLs. The NHC EBLs enable very high brightness (>7,800 cd m(-2)) operation, while achieving deep blue emission with colour coordinates of [0.16, 0.09], suitable for most demanding display applications. We find that both the facial and the meridional isomers of the dopant have high efficiencies that arise from the unusual properties of the NHC ligand-that is, the complexes possess a strong metal-ligand bond that destabilizes the non-radiative metal-centred ligand-field states. Our results represent an advance in blue-emitting PHOLED architectures and materials combinations that meet the requirements of many critical illumination applications.

6.
Phys Chem Chem Phys ; 17(10): 6956-62, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25679194

RESUMO

Solid-state white light-emitting electrochemical cells (LECs) have attracted research attention owing to their advantages of simple device structure, low operation voltage and compatibility with solution processes. In this work, we demonstrate a simple approach to obtain white electroluminescence (EL) from non-doped LECs based on a blue-emitting complex. With a relatively thicker emissive layer, red emission can be additionally enhanced by the microcavity effect when the recombination zone moves to appropriate positions. Hence, white EL can be harvested by combining blue emission from the complex and red emission from the microcavity effect. These non-doped white LECs show external quantum efficiencies and power efficiencies up to 5% and 12 lm W(-1), respectively. These results show that efficient white EL can be obtained in simple non-doped LECs.

7.
J Phys Chem A ; 119(29): 8040-8, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26098409

RESUMO

Transient electron paramagnetic resonance (TREPR) spectroscopy has been used to study the spin-spin interactions in a novel U-shaped electron donor-chromophore-acceptor-radical (D-C-A-R(•)) system in which a xanthene bridge holds a tert-butylphenyl nitroxide (BPNO(•)) radical in close proximity to a naphthalene-1,8:4,5-bis(dicarboximide) (NDI) acceptor. Photoexcitation of the 4-aminonaphthalene-1,8-dicarboximide (ANI) chromophore results in rapid, two-step electron transfer to generate the triradical (D(+•)-C-A(-•)-R(•)). The large through-bond distance between A(-•) and R(•) makes their spin-spin exchange interaction (2JAR) negligibly small, whereas their short through-space distance results in a strong dipolar interaction (DAR), which is observed as a set of broad lines in the TREPR spectra of D(+•)-C-A(-•)-R(•) in solid toluene solution at 85 K. Transient nutation experiments show that these transitions belong to a species with spin S = 1, whereas experiments on D(+•)-C-A(-•)-R(•) in the oriented nematic liquid crystal 4-cyano-4'-n-pentylbiphenyl at 85 K demonstrate the anisotropy of DAR.

8.
Cancer Lett ; 588: 216780, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38462033

RESUMO

Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Pulmonares/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
9.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001915

RESUMO

Targeting viral entry has been the focal point for the last 3 years due to the continued threat posed by SARS-CoV-2. SARS-CoV-2's entry is highly dependent on the interaction between the virus's Spike protein and host receptors. The virus's Spike protein is a key modulator of viral entry, allowing sequential cleavage of ACE2 at the S1/S2 and S2 sites, resulting in the amalgamation of membranes and subsequent entry of the virus. A Polybasic insertion (PRRAR) conveniently located at the S1/S2 site can also be cleaved by furin or by serine protease, TMPRSS2, at the cell surface. Since ACE2 and TMPRSS2 are conveniently located on the surface of host cells, targeting one or both receptors may inhibit receptor-ligand interaction. Here, we show that Dauricine and Isoliensinine, two commonly used herbal compounds, were capable of inhibiting SARS-CoV-2 viral entry by reducing Spike-ACE2 interaction but not suppressing TMPRSS2 protease activity. Further, our biological assays using pseudoviruses engineered to express Spike proteins of different variants revealed a reduction in infection rates following treatment with these compounds. The molecular modeling revealed an interconnection between R403 of Spike protein and both two compounds. Spike mutations at residue R403 are critical, and often utilized by ACE2 to gain cell access. Overall, our findings strongly suggest that Dauricine and Isoliensinine are effective in blocking Spike-ACE2 interaction and may serve as effective therapeutic agents for targeting SARS-CoV-2's viral entry.

10.
Elife ; 122023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642993

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic continues to infect people worldwide. While the vaccinated population has been increasing, the rising breakthrough infection persists in the vaccinated population. For living with the virus, the dietary guidelines to prevent virus infection are worthy of and timely to develop further. Tannic acid has been demonstrated to be an effective inhibitor of coronavirus and is under clinical trial. Here we found that two other members of the tannins family, oligomeric proanthocyanidins (OPCs) and punicalagin, are also potent inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with different mechanisms. OPCs and punicalagin showed inhibitory activity against omicron variants of SARS-CoV-2 infection. The water extractant of the grape seed was rich in OPCs and also exhibited the strongest inhibitory activities for viral entry of wild-type and other variants in vitro. Moreover, we evaluated the inhibitory activity of grape seed extractants (GSE) supplementation against SARS-CoV-2 viral entry in vivo and observed that serum samples from the healthy human subjects had suppressive activity against different variants of SARS-CoV-2 Vpp infection after taking GSE capsules. Our results suggest that natural tannins acted as potent inhibitors against SARS-CoV-2 infection, and GSE supplementation could serve as healthy food for infection prevention.


Since it first surfaced in late 2019, the COVID-19 pandemic has had a significant impact on people's lives. While several vaccines have been created, infections have not disappeared. This is largely due to new variants of the virus responsible for the disease (SARS-CoV-2) emerging, which current vaccines do not work as well against. Indeed, several reports suggest that protection from the omicron variant wanes as shortly as four to six months after vaccination. Therefore, other strategies are needed to reduce the risk of SARS-CoV-2 infections. In 2022, researchers discovered that tannic acid blocked two proteins that SARS-CoV-2 needs to enter and replicate inside human cells. Tannic acid is part of the tannin family, which includes natural molecules found in plant-based meals and beverages. Here, Chen et al. ­ including some of the researchers involved in the 2022 studies ­ set out to find whether two other tannins found in nature (OPCs and punicalagin) could also inhibit SARS-CoV-2. Chen et al. administered tannic acid, OPCs and punicalagin to human cells cultured in a laboratory that had been infected with SARS-CoV-2. This revealed that all three tannins suppress the activity of the same proteins required for viral entry and replication, but to varying degrees suggesting that they block SARS-CoV-2 infections via different mechanisms. The compounds were also able to inhibit different variants of the virus, including omicron, from infecting the lab-grown cells. Further experiments revealed that water extracted from seeded grapes, which contains high levels of OPCs, could also block SARS-CoV-2 entry in the cell culture system. To test this further, Chen et al. gave 18 healthy individuals capsules containing different concentrations of grape seed extract and collected samples of their serum. The serum samples suppressed entry of different variants of SARS-CoV-2 in the cell culture system, with serums from subjects that received the higher dose having the greatest effect. These findings suggest that naturally occurring tannins can suppress multiple variants of SARS-CoV-2 from entering and replicating in cells. Consuming supplements of grape seed extract could potentially reduce the risk of SARS-CoV-2 infections. However, further experiments, including clinical trials, are needed to test this possibility.


Assuntos
COVID-19 , Proantocianidinas , Humanos , Taninos/farmacologia , SARS-CoV-2 , Proantocianidinas/farmacologia , Antioxidantes
11.
Cell Biosci ; 13(1): 210, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964389

RESUMO

BACKGROUND: To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. RESULTS: Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of "Here" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43-54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1-2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. CONCLUSIONS: This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.

12.
Inorg Chem ; 51(22): 12114-21, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23102402

RESUMO

Cationic iridium complexes incorporated 4,5-diaza-9,9'-spirobifluorene as N(∧)N ancillary ligands, in which one (2) or two (3) phenyl groups were introduced onto 4,5-diazafluorene to afford intraligand π-π interactions. The X-ray crystal structures of complexes 2 and 3 show that the pendant phenyl ring forms strong intramolecular face-to-face π-stacking with the difluorophenyl ring of the cyclometalated ligand with distances of 3.38 Å for complex 2 and 3.40 and 3.46 Å for complex 3. This π-π stacking interaction minimizes the expansion of the metal-ligand bonds in the excited state, resulting in a longer device lifetime in the light-emitting electrochemical cell (LEC) devices.

13.
Phys Chem Chem Phys ; 14(3): 1262-9, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22134581

RESUMO

We report efficient host-guest solid-state light-emitting electrochemical cells (LECs) utilizing a cationic terfluorene derivative as the host and a red-emitting cationic transition metal complex as the guest. Carrier trapping induced by the energy offset in the lowest unoccupied molecular orbital (LUMO) levels between the host and the guest impedes electron transport in the host-guest films and thus improves the balance of carrier mobilities of the host films intrinsically exhibiting electron preferred transporting characteristics. Photoluminescence measurements show efficient energy transfer in this host-guest system and thus ensure predominant guest emission at low guest concentrations, rendering significantly reduced self-quenching of guest molecules. EL measurements show that the peak EQE (power efficiency) of the host-guest LECs reaches 3.62% (7.36 lm W(-1)), which approaches the upper limit that one would expect from the photoluminescence quantum yield of the emissive layer (∼0.2) and an optical out-coupling efficiency of ∼20% and consequently indicates superior balance of carrier mobilities in such a host-guest emissive layer. These results are among the highest reported for red-emitting LECs and thus confirm that in addition to reducing self-quenching of guest molecules, the strategy of utilizing a carrier transporting host doped with a proper carrier trapping guest would improve balance of carrier mobilities in the host-guest emissive layer, offering an effective approach for optimizing device efficiencies of LECs.

14.
Phys Chem Chem Phys ; 14(27): 9774-84, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22684499

RESUMO

We study the influence of the carrier injection efficiency on the performance of light-emitting electrochemical cells (LECs) based on a hole-preferred transporting cationic transition metal complex (CTMC) [Ir(dfppz)(2)(dtb-bpy)](+)(PF(6)(-)) (complex 1) and an electron-preferred transporting CTMC [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (complex 2) (where dfppz is 1-(2,4-difluorophenyl) pyrazole, dtb-bpy is 4,4'-di(tert-butyl)-2,2'-bipyridine, ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene). Experimental results show that even with electrochemically doped layers, the ohmic contacts for carrier injection could be formed only when the carrier injection barriers were relatively low. Thus, adding carrier injection layers in LECs with relatively high carrier injection barriers would affect carrier balance and thus would result in altered device efficiency. Comparison of the device characteristics of LECs based on complex 1 and 2 in various device structures suggests that the carrier injection efficiency of CTMC-based LECs should be modified according to the carrier transporting characteristics of CTMCs to optimize device efficiency. Hole-preferred transporting CTMCs should be combined with an LEC structure with a relatively high electron injection efficiency, while a relatively high hole injection efficiency would be required for LECs based on electron-preferred transporting CTMCs. Since the tailored carrier injection efficiency compensates for the unbalanced carrier transporting properties of the emissive layer, the carrier recombination zone would be located near the center of the emissive layer and exciton quenching near the electrodes would be significantly mitigated, rendering an improved device efficiency approaching the upper limit expected from the photoluminescence quantum yield of the emissive layer and the optical outcoupling efficiency from a typical layered light-emitting device structure.

15.
Int J Biol Sci ; 18(12): 4677-4689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874948

RESUMO

In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.


Assuntos
COVID-19 , Coffea , Higienizadores de Mão , Extratos Vegetais , Enzima de Conversão de Angiotensina 2 , Coffea/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
16.
Am J Cancer Res ; 12(7): 3333-3346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968340

RESUMO

Disulfiram is an FDA-approved drug that has been used to treat alcoholism and has demonstrated a wide range of anti-cancer, anti-bacterial, and anti-viral effects. In the global COVID-19 pandemic, there is an urgent need for effective therapeutics and vaccine development. According to recent studies, disulfiram can act as a potent SARS-CoV-2 replication inhibitor by targeting multiple SARS-CoV-2 non-structural proteins to inhibit viral polyprotein cleavage and RNA replication. Currently, disulfiram is under evaluation in phase II clinical trials to treat COVID-19. With more and more variants of the SARS-CoV-2 worldwide, it becomes critical to know whether disulfiram can also inhibit viral entry into host cells for various variants and replication inhibition. Here, molecular and cellular biology assays demonstrated that disulfiram could interrupt viral spike protein binding with its receptor ACE2. By using the viral pseudo-particles (Vpps) of SARS-CoV-2, disulfiram also showed the potent activity to block viral entry in a cell-based assay against Vpps of different SARS-CoV-2 variants. We further established a live virus model system to support the anti-viral entry activity of disulfiram with the SARS-CoV-2 virus. Molecular docking revealed how disulfiram hindered the binding between the ACE2 and wild-type or mutated spike proteins. Thus, our results indicate that disulfiram has the capability to block viral entry activity of different SARS-CoV-2 variants. Together with its known anti-replication of SARS-CoV-2, disulfiram may serve as an effective therapy against different SARS-CoV-2 variants.

17.
J Chromatogr A ; 1685: 463589, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36351322

RESUMO

Immunoglobulin A nephropathy (IgAN) is a highly prevalent autoimmune renal disease. Human IgA1 with galactose deficiency in the hinge region (HR) has been identified as an autoantigen for this disease. Therefore, analyzing IgA1 HR glycoforms in biofluids is important for biomarker discovery. Herein, an analytical method that includes one-pot sample preparation with unbiased plasma IgA purification, dual internal standard addition, and sensitive ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy (UHPLC-QqQ-MS/MS) was developed. Targeted O-glycopeptides detection was performed in pooled plasma with the validation of theoretical retention times, enzymatic treatment outcomes, product ion scans, and signal repeatability. A total of 42 IgA1 O-glycopeptides with N-acetylgalactosamines, galactoses, and sialic acids were determined from 8 µL of plasma. The newly developed method was applied to plasma samples from 16 non-IgAN controls and 19 IgAN patients. Comparing the 42 targets, 16 IgA1 HR O-glycopeptides were statistically different between the two groups (p<0.05). Decreased sialylation was identified in the IgA1 hinge region of IgAN patients, which was also correlated with the estimated glomerular filtration rate (eGFR). The developed method is sensitive and precise and can be used to identify plasma biomarkers for IgA nephropathy.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/diagnóstico , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Imunoglobulina A , Glicopeptídeos/química , Galactose
18.
Phys Chem Chem Phys ; 13(39): 17729-36, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21909560

RESUMO

We report phosphorescent sensitized fluorescent near-infrared (NIR) light-emitting electrochemical cells (LECs) utilizing a phosphorescent cationic transition metal complex [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (where ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene) as the host and two fluorescent ionic NIR emitting dyes 3,3'-diethyl-2,2'-oxathiacarbocyanine iodide (DOTCI) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as the guests. Photoluminescence measurements show that the host-guest films containing low guest concentrations effectively quench host emission due to efficient host-guest energy transfer. Electroluminescence (EL) measurements reveal that the EL spectra of the NIR LECs doped with DOTCI and DTTCI center at ca. 730 and 810 nm, respectively. Moreover, the DOTCI and DTTCI doped NIR LECs achieve peak EQE (power efficiency) up to 0.80% (5.65 mW W(-1)) and 1.24% (7.84 mW W(-1)), respectively. The device efficiencies achieved are among the highest reported for NIR LECs and thus confirm that phosphorescent sensitized fluorescence is useful for achieving efficient NIR LECs.


Assuntos
Fluorescência , Raios Infravermelhos , Medições Luminescentes , Eletroquímica , Transferência de Energia , Corantes Fluorescentes/química , Estrutura Molecular , Compostos Organometálicos/química
19.
Phytomedicine ; 81: 153437, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33352494

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) represents up to 20% of all breast cancers. This cancer lacks the expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The current therapeutic strategy for patients with this subtype is the use of cytotoxic chemotherapy and surgery. Luteolin is a natural herbal flavonoid and a potential therapeutic candidate for multiple diseases. The use of a treatment that combines Chinese herbal medicine and western medicine is rising in Asia. PURPOSE: The present study evaluates the effects and molecular mechanisms involved with luteolin treatment and evaluates whether this herb affects androgen receptor-positive breast cancer cell proliferation or metastasis. STUDY DESIGN: In vitro evaluation of the effect of luteolin on androgen receptor-positive TNBC cell proliferation and metastasis METHODS: Cell viability analysis was used for the cytotoxicity test. Colony formation and Bromodeoxyuridine (BrdU) staining-based proliferation experiments were used for cell proliferation. Wound healing and transwell assays were used for in vitro migration/invasion. The RT-qPCR analysis was used for gene expression. Furthermore, ChIP-qPCR analysis was used for epigenetic modification of gene promoters. RESULTS: Luteolin significantly inhibited the proliferation and metastasis of androgen receptor-positive TNBC. Furthermore, luteolin inactivated the AKT/mTOR signaling pathway and reversed the epithelial-mesenchymal transition (EMT). The combination of luteolin and inhibitors of AKT/mTOR synergistically repressed an androgen receptor-positive TNBC cell proliferation and metastasis. Luteolin also downregulated MMP9 expression by decreasing the levels of the AKT/mTOR promoting H3K27Ac and H3K56A on the MMP9 promoter region. CONCLUSION: Our findings indicate that luteolin inhibited the proliferation and metastasis of androgen receptor-positive TNBC by regulating MMP9 expression through a reduction in the levels of AKT/mTOR-inducing H3K27Ac and H3K56Ac.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Luteolina/farmacologia , Metaloproteinase 9 da Matriz/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
20.
Am J Cancer Res ; 11(3): 827-836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791156

RESUMO

Transmembrane serine protease (TMPRSS2) plays an oncogenic role in prostate cancer as the fusion gene with ERG, and has also been demonstrated to be essential for the cellular entry of severe acute respiratory syndrome coronaviruses (SARS-CoV). Thus, targeting TMPRSS2 is a promising strategy for therapies against both prostate cancer and coronavirus infection. Although Nafamostat and Camostat have been identified as TMPRSS2 inhibitors, severe side effects such as cerebral hemorrhage, anaphylactoid reaction, and cardiac arrest shock greatly hamper their clinical use. Therefore, more potent and safer drugs against this serine protease should be further developed. In this study, we developed a fluorescence resonance energy transfer (FRET)-based platform for effectively screening of inhibitors against TMPRSS2 protease activity. The disruption of FRET between green and red fluorescent proteins conjugated with the substrate peptide, which corresponds to the cleavage site of SARS-CoV-2 Spike protein, was measured to determine the enzymatic activity of TMPRSS2. Through an initiate pilot screening with around 100 compounds, Flupirtine, a selective neuronal potassium channel opener, was identified as a potential TMPRSS2 inhibitor from an FDA-approved drug library by using this screening platform, and showed inhibitory effect on the TMPRSS-dependent infection of SARS-CoV-2 Spike-pseudotyped lentiviral particles. This study describes a platform proven effective for rapidly screening of TMPRSS2 inhibitors, and suggests that Flupirtine may be worthy of further consideration of repurposing to treat COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA