Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; 19(28): e2207404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974592

RESUMO

Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro/química , Nicotina , Praguicidas/análise , Análise Espectral Raman/métodos , Tiram/análise , Nanopartículas Metálicas/química
2.
Anal Chem ; 93(9): 4299-4307, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635644

RESUMO

The localized surface plasmon resonance of plasmonic nanoparticles (NPs) can be coupled with a noble metal substrate (S) to induce a localized augmented electric field (E-field) concentrated at the NP-S gap. Herein, we analyzed the fundamental near-field properties of metal NPs on diverse substrates numerically (using the 3D finite-difference time-domain method) and experimentally [using surface-enhanced Raman scattering (SERS)]. We systematically examined the effects of plasmonic NPs on noble metals (Ag and Au), non-noble metals (Al, Ti, Cu, Fe, and Ni), semiconductors (Si and Ge), and dielectrics (TiO2, ZnO, and SiO2) as substrates. For the AgNPs, the Al (11,664 times) and Si (3969 times) substrates produced considerable E-field enhancements, with Al in particular generating a tremendous E-field enhancement comparable in intensity to that induced by a Ag (28,224 times) substrate. Notably, we found that a superior metallic character of the substrate gave rise to easier induction of image charges within the metal substrate, resulting in a greater E-field at the NP-S gap; on the other hand, the larger the permittivity of the nonmetal substrate, the greater the ability of the substrate to store an image charge distribution, resulting in stronger coupling to the charges of localized surface plasmon resonance oscillation on the metal NP. Furthermore, we measured the SERS spectra of rhodamine 6G (a commonly used Raman spectral probe), histamine (a biogenic amine used as a food freshness indicator), creatinine (a kidney health indicator), and tert-butylbenzene [an extreme ultraviolet (EUV) lithography contaminant] on AgNP-immobilized Al and Si substrates to demonstrate the wide range of potential applications. Finally, the NP-S gap hotspots appear to be widely applicable as an ultrasensitive SERS platform (∼single-molecule level), especially when used as a powerful analytical tool for the detection of residual contaminants on versatile substrates.

3.
Nanotechnology ; 28(46): 465202, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29053473

RESUMO

In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.

4.
Anal Chem ; 87(12): 6017-24, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26043267

RESUMO

In this Article, we present a facile approach for the preparation of ecofriendly substrates, based on common rose petals, for ultrasensitive surface-enhanced Raman scattering (SERS). The hydrophobic concentrating effect of the rose petals allows us to concentrate metal nanoparticle (NP) aggregates and analytes onto their surfaces. From a systematic investigation of the SERS performance when using upper and lower epidermises as substrates, we find that the lower epidermis, with its quasi-three-dimensional (quasi-3D) nanofold structure, is the superior biotemplate for SERS applications. The metal NPs and analytes are both closely packed in the quasi-3D structure of the lower epidermis, thereby enhancing the Raman signals dramatically within the depth of focus (DOF) of the Raman optical system. We have also found the effect of the pigment of the petals on the SERS performance. With the novel petal-based substrate, the SERS measurements reveal a detection limit for rhodamine 6G below the femtomolar regime (10(-15) M), with high reproducibility. Moreover, when we employ an upside-down drying process, the unique effect of the Wenzal state of the hydrophobic petal surface further concentrate the analytes and enhanced the SERS signals. Rose petals are green, natural materials that appear to have great potential for use in biosensors and biophotonics.


Assuntos
Nanopartículas Metálicas/análise , Rodaminas/análise , Rosa/química , Prata/análise , Limite de Detecção , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
5.
Anal Chem ; 86(15): 7192-9, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25019532

RESUMO

We demonstrate an inspection technique, based on only one ellipsometric parameter, Ψ, of spectroscopic ellipsometry (SE), for the rapid, simultaneous identification of both the structural quality and thicknesses of large-area graphene films. The measured Ψ spectra are strongly affected by changes in the out-of-plane absorption coefficients (αTM); they are also correlated to the ratio of the intensities of the D and G bands in Raman spectra of graphene films. In addition, the electronic transition state of graphene within the UV regime assists the characterization of the structural quality. We also demonstrated that the intensities and shifts of the signals in Ψ spectra allow clear identification of the structural qualities and thicknesses, respectively, of graphene films. Moreover, this Ψ-based method can be further applied to graphene films coated on various substrates. In addition, mapping of the values of Ψ is a very convenient and useful means of rapidly characterizing both the structural quality and thickness of 2D materials at local areas. Therefore, this Ψ-based characterization method has great potential for application in the mass production of devices based on large-area graphene.

6.
Analyst ; 139(20): 5103-11, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25121142

RESUMO

In this study, we develop an ultrasensitive nanoparticle (NP)-film caliper that functions with high resolution (angstrom scale) in response to both the dimensions and refractive index of the spacer sandwiched between the NPs and the film. The anisotropy of the plasmonic gap mode in the NP-film caliper can be characterized readily using spectroscopic ellipsometry (SE) without the need for further optical modeling. To the best of our knowledge, this paper is the first to report the use of SE to study the plasmonic gap modes in NP-film calipers and to demonstrate that SE is a robust and convenient method for analyzing NP-film calipers. The high sensitivity of this system originates from the plasmonic gap mode in the NP-film caliper, induced by electromagnetic coupling between the NPs and the film. The refractometric sensitivity of this NP-film caliper reaches up to 314 nm per RIU, which is superior to those of other NP-based sensors. The NP-film caliper also provides high dimensional resolution, down to the angstrom scale. In this study, the shift in wavelength in response to the change in gap spacing is approximately 9 nm Å(-1). Taking advantage of the ultrasensitivity of this NP-film caliper, we develop a platform for discriminating among thiol-containing amino acids.


Assuntos
Técnicas de Química Analítica/instrumentação , Nanopartículas/química , Refratometria , Técnicas Biossensoriais , Cisteína/química , Análise Discriminante , Glutationa/química , Homocisteína/química
7.
Small Methods ; 8(5): e2301061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098297

RESUMO

This study reports the first attempt to characterize the quality, defects, and strain of as-grown monolayer transition metal dichalcogenide (TMDC)-based 2D materials through exciton anisotropy. A standard ellipsometric parameter (Ψ) to observe anisotropic exciton behavior in monolayer 2D materials is used. According to the strong exciton effect from phonon-electron coupling processes, the change in the exciton in the Van Hove singularity is sensitive to lattice distortions such as defects and strain. In comparison with Raman spectroscopy, the variations in exciton anisotropy in Ψ are more sensitive for detecting slight changes in the quality and strain of monolayer TMDC films. Moreover, the optical power requirement for TMDC characterization through exciton anisotropy in Ψ is ≈10-5 mW cm-2, which is significantly less than that of Raman spectroscopy (≈106 mW cm-2). The standard deviation of the signals varies with strain (defects) in Raman spectra and exciton anisotropies in Ψ are 0.700 (0.795) and 0.033 (0.073), indicating that exciton anisotropy is more sensitive to slight changes in the quality of monolayer TMDC films.

8.
Anal Chem ; 85(3): 1605-14, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23323974

RESUMO

In this study, we find that the optical anisotropy of graphene films could be used as an alternative quality factor for the rapid characterization of large-area graphene films prepared through chemical vapor deposition. We develop an angle-variable spectroscopic method to rapidly determine the optical anisotropy of graphene films. Unlike approaches using Raman scattering spectroscopy, this optical anisotropy method allows ready characterization of the structural quality of large-area graphene samples without the application of high-intensity laser irradiation or complicated optical setups. Measurements of optical anisotropy also allow us to distinguish graphene samples with different extents of structural imperfections; the results are consistent with those obtained from using Raman scattering spectroscopy. In addition, we also study the properties of graphene-based transparent conductive films at wide incident angles because of the advantage of the optical anisotropic properties of graphene. The transmittance of graphene is much higher than that of indium tin oxide films, especially at large incident angles.

9.
Anal Chem ; 84(11): 5140-5, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22545942

RESUMO

Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.


Assuntos
Técnicas Biossensoriais , Cisteína/análise , Nanopartículas Metálicas/química , Fitas Reagentes/química , Colorimetria , Ouro/química , Química Verde , Temperatura Alta , Lasers , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Papel , Processos Fotoquímicos , Soluções
10.
Int J Mol Sci ; 13(3): 3718-3737, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489178

RESUMO

This study synthesized a europium (Eu(3+)) complex Eu(DBM)(3)Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu(3+) energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π-π interactions between the ligands and the Eu(3+)-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu(3+) emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.


Assuntos
Európio/química , Corantes Fluorescentes/química , Luminescência , Metacrilatos/química , Fluorescência , Ligantes , Estrutura Molecular , Fenantrolinas/química , Fármacos Fotossensibilizantes , Espectrometria de Fluorescência , Difração de Raios X
11.
Adv Sci (Weinh) ; 9(1): e2102128, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716758

RESUMO

Optical inspection is a rapid and non-destructive method for characterizing the properties of two-dimensional (2D) materials. With the aid of optical inspection, in situ and scalable monitoring of the properties of 2D materials can be implemented industrially to advance the development and progress of 2D material-based devices toward mass production. This review discusses the optical inspection techniques that are available to characterize various 2D materials, including graphene, transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), group-III monochalcogenides, black phosphorus (BP), and group-IV monochalcogenides. First, the authors provide an introduction to these 2D materials and the processes commonly used for their fabrication. Then they review several of the important structural properties of 2D materials, and discuss how to characterize them using appropriate optical inspection tools. The authors also describe the challenges and opportunities faced when applying optical inspection to recently developed 2D materials, from mechanically exfoliated to wafer-scale-grown 2D materials. Most importantly, the authors summarize the techniques available for largely and precisely enhancing the optical signals from 2D materials. This comprehensive review of the current status and perspective of future trends for optical inspection of the structural properties of 2D materials will facilitate the development of next-generation 2D material-based devices.

12.
Biosens Bioelectron ; 200: 113920, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973566

RESUMO

Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca. 1010; detection limit: ca. 10-18 M)-and great signal reproducibility (variation: ca. 3.6%). Moreover, the Ag NCK arrays demonstrated broad applicability and practicability for on-site detection when combined with a portable 785 Raman spectrometer. This method allowed the highly sensitive detection of a diverse range of analytes (benzo[a]pyrene, di-2-ethylhexyl phthalate, aflatoxins B1, zearalenone, ractopamine, salbutamol, sildenafil, thiram, dimethoate, and methamidophos). In particular, pesticides are used extensively in agricultural production. Unfortunately, they can affect the environment and human health as a result of acute toxicity. Therefore, the simultaneous label-free detection of three different pesticides was demonstrated. Finally, the SERS substrates are fabricated through a simple, efficient, and scalable process that offers new opportunities for mass production.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Reprodutibilidade dos Testes , Prata , Análise Espectral Raman , Tiram
13.
Phys Chem Chem Phys ; 13(13): 5747-52, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21321717

RESUMO

In this paper we demonstrate an optical storage medium having advantages of ultrahigh contrast, superior stability, and broadband working wavelengths. Combining a single shot of deep-ultraviolet (UV) laser illumination with a Au particle-assisted etching process, we formed broadband antireflective, one-dimensional silicon nanowire arrays (SiNWs) with selectively at specific positions. Optical measurements and three-dimensional finite-difference time domain (3D-FDTD) simulations revealed ultrahigh reflection contrast between the Au and the SiNWs for both far- and near-field regimes. Relative to typical organic-based storage media, Au films and SiNWs are more stable, both chemically and thermally; therefore, we suspect that this new storage medium would exhibit high stability toward moisture, sunshine, and elevated temperatures.

14.
Nanotechnology ; 20(40): 405207, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19738298

RESUMO

A polymer solar cell based on poly(3-hexylthiophene) (P3HT)/iron disulfide (FeS2) nanocrystal (NC) hybrid is presented. The FeS2 NCs of 10 nm in diameter were homogeneously blended with P3HT to form an active layer of a solar cell. An extended red light harvesting up to 900 nm resulting from the NCs in the device has been demonstrated, compared to a typical absorption edge of 650 nm of a pristine P3HT. The environmentally friendly and low-cost FeS2 NCs can be used as a promising candidate for an acceptor in the polymer solar cell device application with an enhanced photovoltaic response in the extended red light region.


Assuntos
Fontes de Energia Elétrica , Ferro/química , Nanopartículas/química , Nanotecnologia/métodos , Energia Solar , Sulfetos/química , Tiofenos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Difração de Raios X
15.
ACS Appl Mater Interfaces ; 11(3): 3150-3159, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30624888

RESUMO

Although the use of plasmonic nanostructures for photodetection below the band gap energy of the semiconductor has been intensively investigated recently, efficiencies of such hot electron-based devices have, unfortunately, remained low because of the inevitable energy loss of the hot electrons as they move and transfer in active antennas based on metallic nanostructures. In this work, we demonstrate the concept of high-refractive-index material-embedded trench-like (ETL) active antennas that could be used to achieve almost 100% absorbance within the ultrashallow region (approximately 10 nm) beneath the metal-semiconductor interface, which is a much smaller distance compared with the hot electrons' mean free path in the noble metal layer. Taking advantage of these ETL-based active antennas, we obtained photoresponsivities under zero bias at wavelengths of 1310 and 1550 nm of 5854 and 693 nA mW-1, respectively-values higher than most those previously reported for active antenna-based silicon (Si) photodetectors that operate at optical telecommunication wavelengths. Furthermore, the ETL antenna strategy allowed us to preserve an omnidirectional and broadband photoresponse, with a superior degree of detection linearity of R2 = 0.98889 under the light of low power density (down to 11.1 µW cm-2). The photoresponses of the ETL antenna-based device varied by less than 10% upon changing the incident angle from normal incidence to 60°. Because these ETL-based devices provide high responsivity and omnidirectional detection over a broad bandwidth, they show promising potentials for use in hot electron-based optoelectronics for many applications (e.g., Si photonics, energy harvesting, photocatalysis, and sensing devices).

16.
Nanoscale ; 10(37): 17576-17584, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29901683

RESUMO

Fluorescent nanodiamonds (FNDs) having nitrogen-vacancy (NV) centers have drawn much attention for their biocompatibility and stable optical properties. Nevertheless, the NV centers are located in the interior of the FNDs, and it has not been possible to increase the fluorescence intensity of FNDs efficiently using previously developed enhancement methods. In this paper, we present a simple nanocavity structure that enhances the fluorescence intensity of FNDs. The designed Al/SiO2 nanocavities are stable and inexpensive, and provide a large region for efficient enhancement of fluorescence that can cover most 100 nm FNDs. By tuning the thickness of the capping SiO2 layer of the Al/SiO2 nanocavities, the distributions of both the spatial and spectral electric field intensities of the FNDs could be controlled and manipulated. In general, the FNDs were excited using a green-yellow laser; the broadband fluorescence of the FNDs comprised the emissions from neutral (NV0) and negatively charged (NV-) NV centers. To enhance the fluorescence intensity from the NV- centers of the FNDs, we designed an Al/70 nm SiO2 nanocavity to function at excitation and emission wavelengths of 633 and 710 nm, respectively, allowing the NV- centers to be excited efficiently; as a result, we achieved an enhancement in fluorescence intensity of 11.2-fold. Moreover, even when we covered 100 nm FNDs with polyglycerol (forming p-FND), the fluorescence intensities of the p-FND particles placed on the nanocavities remained greatly enhanced.

17.
Nanoscale ; 8(38): 16936-16946, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714149

RESUMO

A simple structure, efficient color splitting, sufficient output of electrical signals, and low power consumption are the important characteristics of contemporary devices for color sensing. In this study, we developed filter-free, junctionless structures that exhibited a superior photo-thermo-electrical response under a low bias voltage and a short response time in milliseconds. Although our compact sensor had a simple single-layer trench-like aluminum (Al) structure, it could perform multiple functions, including light harvesting, color-selective absorption, photo-thermo-electrical transformation, and the ability to collect photoinduced differences in electrical signals. This device exploited near-field surface plasmon resonance and cavity effects to enhance the intensity of the electric field and the color-selective absorption, ultimately resulting in significant current signals in its structured Al film. This strategy significantly simplifies not only the components of the color sensor but also its fabrication; for example, red, green, and blue color detection devices could be prepared simultaneously through a single lithography, etching, and deposition step. With its ability to provide functional filter-free, junctionless structures, this strategy has great potential for the production of devices that operate on different kinds of substrates, thereby bridging various applications of color sensing technologies.

18.
ACS Appl Mater Interfaces ; 8(10): 6718-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26925762

RESUMO

High pixel density, efficient color splitting, a compact structure, superior quantum efficiency, and low power consumption are all important features for contemporary color-image sensors. In this study, we developed a surface plasmonics-based color-image sensor displaying a high photoelectric response, a microlens-free structure, and a zero-bias working voltage. Our compact sensor comprised only (i) a multifunctional electrode based on a single-layer structured aluminum (Al) film and (ii) an underlying silicon (Si) substrate. This approach significantly simplifies the device structure and fabrication processes; for example, the red, green, and blue color pixels can be prepared simultaneously in a single lithography step. Moreover, such Schottky-based plasmonic electrodes perform multiple functions, including color splitting, optical-to-electrical signal conversion, and photogenerated carrier collection for color-image detection. Our multifunctional, electrode-based device could also avoid the interference phenomenon that degrades the color-splitting spectra found in conventional color-image sensors. Furthermore, the device took advantage of the near-field surface plasmonic effect around the Al-Si junction to enhance the optical absorption of Si, resulting in a significant photoelectric current output even under low-light surroundings and zero bias voltage. These plasmonic Schottky-based color-image devices could convert a photocurrent directly into a photovoltage and provided sufficient voltage output for color-image detection even under a light intensity of only several femtowatts per square micrometer. Unlike conventional color image devices, using voltage as the output signal decreases the area of the periphery read-out circuit because it does not require a current-to-voltage conversion capacitor or its related circuit. Therefore, this strategy has great potential for direct integration with complementary metal-oxide-semiconductor (CMOS)-compatible circuit design, increasing the pixel density of imaging sensors developed using mature Si-based technology.

19.
J Colloid Interface Sci ; 466: 80-90, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707775

RESUMO

In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields.


Assuntos
Compostos de Anilina/análise , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/análise , Bioquímica , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
20.
Nanoscale ; 8(6): 3647-59, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26809318

RESUMO

In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA