Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ecotoxicol Environ Saf ; 259: 115064, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229873

RESUMO

Pomacea canaliculata is a malignant invasive aquatic snail found worldwide, and niclosamide (NS) is one of the primary agents used for its control. NS applied to water will exist in non-lethal concentrations for some time due to degradation or water exchange, thus resulting in sublethal effects on environmental organisms. To identify sublethal effects of NS on Pomacea canaliculata, we studied the aspects of histopathology, oxygen-nitrogen ratio (RO∶N), enzyme activity determination, and gene expression. After LC30 NS treatment (0.310 g/L), many muscle fibers of the feet degenerated and some acinar vesicles of the hepatopancreas collapsed and dissolved. The oxygen-nitrogen ratio (RO∶N) decreased significantly from 15.0494 to 11.5183, indicating that NS had changed the metabolic mode of Pomacea canaliculata and shifted it primarily to protein catabolism. Transcriptome analysis identified the sublethal effects of LC30 NS on the snails at the transcriptional level. 386, 322, and 583 differentially expressed genes (DEGs) were identified in the hepatopancreas, gills, and feet, respectively. GO (Gene Ontology) functional analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that DEGs in the hepatopancreas were mainly enriched for sugar metabolism, protein biosynthesis, immune response, and amino acid metabolism functional categories; DEGs in the gills were mainly enriched for ion transport and amino acid metabolism; DEGs in the feet were mainly enriched for transmembrane transport and inositol biosynthesis. In the future, we will perform functional validation of key genes to further explain the molecular mechanism of sublethal effects.


Assuntos
Alimentos , Niclosamida , Animais , Niclosamida/toxicidade , Metabolismo dos Carboidratos , Água , Aminoácidos
2.
Pestic Biochem Physiol ; 192: 105424, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105626

RESUMO

Virtual screening is an efficient way to obtain new drugs, which has become an important method in the field of pesticide research. Protein neural wiskott-Aldrich syndrome isoform X1 (PcnWAS) is a target protein that exists in the haemocytes of Pomacea canaliculata, and in this study, isothermal titration calorimetry (ITC) was used to evaluate the binding ability of protein PcnWAS and pedunsaponin A in vitro. Furthermore, it was set as a receptor, and the design of molluscicidal compounds based on protein PcnWAS was carried out. Results showed that, pedunsaponin A had high binding capacity with protein PcnWAS, and the binding constant (Ka) was 2.98 ± 1.74 × 10-4. A new potential molluscicidal compound thionicotinamide-adenine-dinucleotide (thionicotinamide-DPN) was obtained by virtual screening. In-vivo bioassay indicated that, the LC50 value was 57.7102 mg/L (72 h), and the oxygen consumption rate, ammonia excretion rate, oxygen nitrogen ratio and hemocyanin content of P. canaliculata declined after 60 mg/L thionicotinamide-DPN treated. Furthermore, the treatment of thionicotinamide-DPN also decreased gene expression level of protein PcnWAS. The results of ITC test showed that thionicotinamide-DPN can bind with protein PcnWAS efficiently, which means that it has the same target with pedunsaponin A when interacted with P. canaliculata. All the above results lay a foundation for the development of new molluscicides.


Assuntos
Moluscocidas , Saponinas , Triterpenos , Animais , Caramujos , Moluscocidas/farmacologia , Proteínas
3.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724101

RESUMO

Soybean (Glycine max L.) is one of the important oilseed and vegetable crop worldwide and provides the main source of vegetable oil and proteins for human and livestock (Hartman et al. 2011). In October 2021, approximately 35% of soybean pods suffered from anthracnose in the farmer's field in Chongzhou, Sichuan Province, China (103°40'12"E, 30°37'48"N), and the occurrence area accounted for about 3.3 hm2. Symptoms of soybean were characterized by yellow spots at the initial stage, gradually expanded into dark brown spots, and eventually amounts of small black particles were densely arranged in the wheel shape on dead spots. Diseased spots of soybean pods were cut into pieces and sequentially sterilized in 75% alcohol for 30 s, 4% sodium hypochlorite for 30 s, sterile water for 3 times. After that, these pieces were placed on potato dextrose agar (PDA), and incubated at 25±2°C in the dark for 5-7 days. Single spore was separately picked and transferred to a fresh PDA plate to obtain pure culture isolates. Total six pure isolates were collected, and among them the hyphae of representative isolate 8-B were initially white, turned grey gradually on PDA medium, and the colonial reverse were radiating, whorled or a mixture of both. Conidia of 8-B were septate, hyaline, unicellular, cylindrical, obtusely rounded at both ends with 1 or 2 oil balls inside, and 10.5-17.6 µm in length and 7.0 µm-3.6 µm in width (n=100). The conidial appressoria were brown subspherical, 6.9 µm-13.3 µm in length and 5.6 µm-10.1 µm (n=50) in width. Based on morphological and cultural characteristics, the isolate 8-B was tentatively identified as Colletotrichum gloeosporioides species complex(Weir et al. 2012). To test pathogenicity, the mycelial plugs were inoculated on 20 detached soybean pods at full seed (R6) stage, and three areas of each pod were lightly scratched using a needle prior to inoculation. As controls, the PDA plugs were attached to the pinned-treated pods. Three independent replicates were conducted for control and inoculated pods, respectively. All pods were incubated in a greenhouse at 25 ± 2°C with a relative humidity of approximately 90%. After 4-5 days post-inoculation, typical anthracnose lesions were observed on the inoculated pods while the control pods remained healthy only with small wound spots. The pathogen re-isolated from all the inoculated pods were morphologically identical to the inoculation isolate (8-B). For further molecular verification, the six gene fragments including the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), actin (ACT), ß-tubulin 2 (TUB2) and calmodulin (CAL) were amplified and sequenced (Weir et al. 2012, Damm et al. 2012), and the obtained sequences were deposited in GenBank (Accession numbers ON960278, ON685214, ON964475, ON974476, ON685215 and ON964477, respectively). All six gene sequences of 8-B had a high identity to C. fructicola (the stand isolate ICMP 18581) with the accession numbers ON960278 (100%), ON974476 (96%), ON685214 (99%), ON964475 (99%), ON685215 (100%), and ON964477 100%), respectively. Anthracnose disease caused by C. fructicola has previously been reported to affect a range of plant hosts worldwide (Guarnaccia et al. 2017). However, it is still unknown on C. fructicola causing anthracnose in soybean in China. This study firstly reports C. fructicola as the causal agent of anthracnose on soybean in the country, and provides a theoretical basis for the diagnosis and control of this disease.

4.
Plant Dis ; 107(10): 3248-3258, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37005505

RESUMO

Pseudomonas syringae pv. actinidiae causes kiwifruit bacterial canker and poses a major threat to the kiwifruit industry. This study aimed to investigate the genetic characteristics of the P. syringae pv. actinidiae population from kiwifruit in Sichuan, China. Sixty-seven isolates obtained from diseased plants were characterized using morphological features, multiplex-PCR, and multilocus sequence analysis (MLSA). The isolates exhibited the typical colony morphology of P. syringae pv. actinidiae. Multiplex PCR amplification identified every isolate as P. syringae pv. actinidiae biovar 3. MLSA of the three housekeeping genes gapA, gyrB, and pfk, revealed that the reference strains of the five described biovars were clearly distinguished by a combined phylogenetic tree, and all of the tested isolates clustered with the reference strains of P. syringae pv. actinidiae biovar 3. Through a phylogenetic tree constructed from a single gene, it was found that pkf gene alone could distinguish biovar 3 from the other biovars. Furthermore, all P. syringae pv. actinidiae isolates analyzed by BOX-A1R-based repetitive extragenic palindromic (BOX)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR clustered into four groups. The clustering results of BOX- and ERIC-PCR indicated that group III had the largest number of isolates, accounting for 56.72 and 61.19% of all 67 isolates, respectively, and the two characterization methods were similar and complementary. The results of this study revealed that the genomes of P. syringae pv. actinidiae isolates from Sichuan had rich genetic diversity but no obvious correlation was found between clustering and geographical region. This research provides novel methodologies for rapidly detecting kiwifruit bacterial canker pathogen and a molecular differentiation at genetic level of P. syringae pv. actinidiae biovar diversity in China.


Assuntos
Actinidia , Pseudomonas syringae , Filogenia , Doenças das Plantas/microbiologia , Tipagem de Sequências Multilocus , Actinidia/microbiologia , China
5.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770700

RESUMO

The synthesis of dicyclic spiropyridazine oxoindole derivatives by using [3+3]-cycloaddition of N-unsubstituted isatin N,N'-cyclic azomethine imine 1,3-dipoles was reported. The products bearing two consecutive stereocenters, including spiroquaternary stereocenters in one ring structure, can be effectively obtained in moderate to excellent yields (20-93%) and low to moderate diastereoselectivities (1:9-10:1 dr). The synthesized compounds (>35 examples) were characterized by single-crystal XRD, FTIR, NMR, and mass spectral analysis.

6.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049765

RESUMO

Allylation of N-unsubstituted isatin N,N'-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1-10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, ß-diallylated isatin N,N'-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts.

7.
Ecotoxicol Environ Saf ; 246: 114198, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272173

RESUMO

Pomacea canaliculata, as an invasive snail in China, can adversely affect agricultural crop yields, ecological environment, and human health. In this paper, we studied the molluscicidal activity and mechanisms of arecoline against P. canaliculata. The molluscicidal activity tests showed that arecoline exhibits strong toxicity against P. canaliculata, and the LC50 value (72 h) was 1.05 mg/L (15 ± 2 mm shell diameter). Additionally, Molluscicidal toxicity were negatively correlated with the size of snails. Snails (25 ± 2 mm shell diameter) were choosed for mechanisms research and the result of microstructure and biochemistry showed that arecoline (4 mg/L, 20 â„ƒ) had strong toxic effect on the gill, and the main signs were the loss of cilia in the gill filaments. Moreover, arecoline significantly decreased the oxygen consumption rate, ammonia excretion rate and inhibited acetylcholinesterase (AChE). Then, the changes in protein expression were studied by iTRAQ, and 526 downregulated proteins were found. Among these, cilia and flagella-associated 157-like (PcCFP) and rootletin-like (PcRoo) were selected as candidate target proteins through bioinformatics analysis, and then RNA interference (RNAi) was adopted to verify the function of PcCFP and PcRoo. The results showed that after arecoline treated, the mortality and the cilia shedding rate of PcRoo RNAi treated group was significantly lower than control group. The above results indicate that arecoline can bind well with protein PcRoo, and then leads to the drop of gill cilia, affect respiratory metabolism, accelerate its entry into hemolymph, inhibit AChE and finally leads to the death of P. canaliculata.


Assuntos
Gastrópodes , Moluscocidas , Animais , Humanos , Arecolina , Acetilcolinesterase , Moluscocidas/toxicidade , Dose Letal Mediana
8.
Pestic Biochem Physiol ; 188: 105243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464353

RESUMO

Previous studies have found that temperature influences molluscicidal the activity of pedunsaponin A (PA), which may be related to the expression of Hsp70, a cold-tolerance gene in Pomacea canaliculata. We determined the temperature effect of PA and the relationship between Hsp70 and temperature sensitivity of P. canaliculata poisoned by PA. Toxicity tests resulted in LC50 values of 17.7239 mg⋅L-1 at 10 °C, which decreased to 2.5774 mg⋅L-1 at 30 °C, implying a positive correlation between toxicity of PA and temperature. After Hsp70 being interfered, the mortality rate of P. canaliculata treated with PA for 72 h was 70%, which was significantly higher than that of snails treated with PA for 72 h without interfering (56.7%). Meanwhile, immune enzyme activities such as SOD, ACP and AKP were significantly increased in the interfered group and expression level of PcAdv in the gill was also significantly increased. These results suggest that deletion of Hsp70 promotes the activation of some immune enzymes of P. canaliculata and elevates the content of target proteins to cope with the dual stresses of low temperatures and molluscicides. These findings indicate that the Hsp70 plays an important role in influencing the temperature sensitivity of P. canaliculata when treated with PA.


Assuntos
Gastrópodes , Moluscocidas , Animais , Temperatura , Proteínas de Choque Térmico HSP70/genética , Temperatura Baixa
9.
J Asian Nat Prod Res ; 24(7): 648-656, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34251917

RESUMO

Five compounds were identified from Tripterygium wilfordii, including two novel compounds and three previously known compounds. Two newly discovered compounds are celangulin CY (1α,2α,3ß,4ß,6ß,8α,13-hepacetoxy-9ß-benzoyloxy-ß-dihydroagarofuran) and celangulin CQ (1α-nicotinoyloxy-2α,3ß,6ß-triacetoxy-9ß-furancarbonyloxy-13-isobutanoyloxy-4ß-hydroxy-ß-dihydroagarofuran). Their structures were determined using nuclear magnetic resonance (NMR), mass spectrometry (MS), and high-pressure liquid chromatography (HPLC). The isolated compounds were tested for insecticidal activity against the third instar larvae of Spodoptera frugiperda. Both celangulin CY and celangulin CQ exhibited significantly higher oral toxicity in the larvae than that exhibited by the three known compounds.


Assuntos
Medicamentos de Ervas Chinesas , Inseticidas , Sesquiterpenos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Inseticidas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sesquiterpenos/química , Tripterygium
10.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889462

RESUMO

The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.


Assuntos
Medicamentos de Ervas Chinesas , Ligusticum , Antifúngicos/farmacologia , Botrytis , Medicamentos de Ervas Chinesas/química , Ligusticum/química
11.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364450

RESUMO

Niclosamide (NI) is the main molluscicide used to control Pomacea canaliculata (Lamarck) (Architaenioglossa: Ampullariidae). However, NI failed to inhibit snail climbing during the treatment process. In this study, we examined the effect of NI combined with pedunsaponin A at an ineffective concentration. The molluscicidal effect of Pedunsaponin A on NI was evidently synergistic after 48 h, and the synergism ratio (SR) was 1.82 after treatment for 72 h at 0.8 mg·L-1. Examination of the climbing adhesion effect showed that a high concentration of Pedunsaponin A (0.4 mg·L-1 and 0.8 mg·L-1) combined with NI significantly inhibited the climbing of P. canaliculata. We further studied the synergism mechanism; the results of histopathological observation showed that the siphon appeared cavities, the muscle fibers of the ventricular were severely dissolved, and kidney tubule arrangement was distorted after NI adding Pedunsaponin A. In addition, the hemocyte survival rate and the content of hemocyanin decreased significantly. According to the results of our study, the synergism mechanism may hinder oxygen transport of P. canaliculata, influencing the supply of energy; the ability of immune defense and excretion and metabolic detoxification decreased, prolonging the action time of NI in the body.


Assuntos
Moluscocidas , Saponinas , Animais , Niclosamida/farmacologia , Moluscocidas/farmacologia , Saponinas/farmacologia , Caramujos
12.
Ecotoxicol Environ Saf ; 220: 112393, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098426

RESUMO

Previous study found that pedunsaponin A (PA) influenced the cytoskeleton of Pomacea canaliculata hemocytes, leading to depolarization and haemocyte destruction and eventually to snail death. In this study, we analysed the changes in protein expression by iTRAQ-mediated proteomics and identified 51 downregulated proteins. Among these, we focused on proteins related to cytoskeletal function and identified neural Wiskott-Aldrich syndrome isoform X1 (PcnWAS). The full-length PcnWAS gene contains 9791 bp and includes an open reading frame of 1401 bp that encodes 735 amino acids with a predicted molecular mass of 49.83 kD. PcnWAS exhibited a relatively distant genetic relationship with known species; the closest homologue is Biomphalaria glabrata (57%). RNA interference (RNAi) was adopted to verify the function of PcnWAS after screening the siRNA sequence with an efficiency of 97%. Interference with the gene expression of PcnWAS did not lead to snail death, but the depolarization level increased, which demonstrated that PcnWAS is an important depolarization-related protein. The results of PA treatment of snails subjected to RNAi proved that interfering with PcnWAS gene expression decreased the molluscicidal activity of PA toward P. canaliculata; snail mortality after RNAi was significantly lower (40%) than that in PA-treated snails without RNAi (54%), while the survival rate and depolarization level in haemocytes were not significant, indicating that PcnWAS is only one of the important target proteins of PA in P. canaliculata. This study lays the foundation for further exploration of the molecular mechanism by which PA kills this harmful snail.


Assuntos
Citoesqueleto/efeitos dos fármacos , Gastrópodes/efeitos dos fármacos , Moluscocidas/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Regulação para Baixo , Gastrópodes/genética , Gastrópodes/metabolismo , Hemócitos/efeitos dos fármacos , Proteômica , Interferência de RNA , Proteína da Síndrome de Wiskott-Aldrich/genética
13.
Pestic Biochem Physiol ; 179: 104963, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802513

RESUMO

Glabridin is a natural plant-derived compound that has been widely used in medicine and cosmetic applications. However, the fungicidal mechanism of glabridin against phytopathogens remains unclear. In this study, we determined the biological activity and physiological effects of glabridin against F. graminearum. Then the differentially expressed proteins of F. graminearum were screened. The EC50 values of glabridin in inhibiting the mycelial growth and conidial germination of F. graminearum were 110.70 mg/L and 40.47 mg/L respectively. Glabridin-induced cell membrane damage was indicated by morphological observations, DiBAC4(3) and PI staining, and measurements of relative conductivity, ergosterol content and respiratory rates. These assays revealed that the integrity of the membrane was destroyed, the content of ergosterol decreased, and the respiratory rate was inhibited. A proteomics analysis showed that 186 proteins were up-regulated and 195 proteins were down-regulated. Mechanically sensitive ion channel proteins related to transmembrane transport and ergosterol biosynthesis ERG4/ERG24, related to ergosterol synthesis were blocked. It is speculated that glabridin acts on ergosterol synthesis-related proteins to destroy the integrity of the cell membrane, resulting in abnormal transmembrane transport and an increased membrane potential. Finally, the morphology of mycelia was seriously deformed, growth and development were inhibited. As a result death was even induced.


Assuntos
Fungicidas Industriais , Fusarium , Isoflavonas , Fenóis/farmacologia , Doenças das Plantas
14.
J Asian Nat Prod Res ; 22(2): 144-152, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30526081

RESUMO

Two oleanane-type triterpenoid saponins named pedunsaponin D (1) and pedunsaponin E (2) were isolated from the roots of Pueraria peduncularis. The structures of the new compounds were elucidated based on chemical and physicochemical evidence as follows: pedunsaponin D, 3-O-ß-glucopyranosyl-(1-3)-ß-glucuronopyranosyl-3ß,15α,23α-trihydroxy-11,13(18)-oleanadien-16-one (1); pedunsaponin E, 3-O-ß-glucopyranosyl-(1-2)-ß-glucopy ranosyl(1-2)[ß-glucopyranosyl(1-3)-ß-glucuronopyranosyl]-3ß-hydroxy-16-oxoolean-12-en-30-oic acid (2). The two compounds showed moderate molluscicidal activity.[Formula: see text].


Assuntos
Pueraria , Saponinas , Triterpenos , Estrutura Molecular , Raízes de Plantas
15.
Plant Dis ; 103(6): 1084-1091, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31009363

RESUMO

Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici, is one of the most destructive wheat diseases in China, especially in Sichuan Province. Successfully oversummered B. graminis f. sp. tritici can become a primary infection source for wheat seedlings in the fall. Determining the latent infection level of B. graminis f. sp. tritici in volunteer wheat and the oversummering areas of B. graminis f. sp. tritici is important for estimating potential B. graminis f. sp. tritici epidemics. In this study, we clarified the critical role of volunteer wheat in the B. graminis f. sp. tritici oversummering cycle and determined whether latent B. graminis f. sp. tritici infection was present in volunteer wheat by using real-time polymerase chain reaction (real-time PCR). The results indicated that volunteer wheat was mostly found in the northeast and middle regions of Sichuan, where lower temperatures and higher precipitation are common. A total of 13.2% of samples showed symptoms of B. graminis f. sp. tritici (spores) in the field, and 36.8% of samples were found to carry the B. graminis f. sp. tritici pathogen, even though no symptoms were observed. Volunteer wheat with B. graminis f. sp. tritici infection symptoms was found at an altitude of 536 m but volunteer wheat latently infected by B. graminis f. sp. tritici was identified at the lowest altitude of 323 m. Crop shade (e.g., corn and lima bean) provided suitable conditions for the survival of volunteer wheat in the summer. In addition, volunteer wheat played a key role in the B. graminis f. sp. tritici oversummering cycle. Moreover, B. graminis f. sp. tritici could oversummer by infecting generations of volunteer wheat in the summer, thereby becoming the primary infection source for autumn-sown wheat. The results showed that the latent infection of wheat diseases could be rapidly quantified by real-time PCR. Here, the primary disease center of autumn-sown wheat in Ya'an and Wenjiang were detected accurately based on this method. This study provides solid evidence for identifying the disease center, which offers guidance for wheat disease control and management.


Assuntos
Ascomicetos , Triticum , Ascomicetos/fisiologia , China , Doenças das Plantas , Triticum/microbiologia
16.
Plant Dis ; 103(4): 748-758, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30789316

RESUMO

Botrytis cinerea (anamorph of Botryotinia fuckeliana) causes gray mold on numerous plants, including kiwifruit. The primary aim of this study was to investigate the phenotypic and genetic characteristics of the Botrytis cinerea population from kiwifruit in Sichuan Province, China. In all, 176 isolates were collected from kiwifruit orchards from eight geographic regions in Sichuan. All isolates were identified as B. cinerea sensu stricto based on the combined datasets, including morphological criteria, determination of the Bc-hch allele, and phylogenetic analysis of the genes RPB2, G3PDH, and HSP60. Three colony types (i.e., sclerotial, mycelial, and conidial) were observed on potato dextrose agar after 2 weeks, with sclerotial isolates, the predominant category, accounting for 40.91%. No obvious differences in microscopic characteristics were observed among the three types. Three genotypes of transposable elements were identified in the B. cinerea population: boty, flipper, and transposa types. The most prevalent genotype from different geographic populations of B. cinerea was transposa; in contrast, the flipper genotype accounted for only 3.98% of the total population, whereas the vacuma genotype was absent. According to MAT locus amplification, 87 and 89 isolates are MAT1-1 and MAT1-2 type, respectively, and the two mating types were found to be balanced overall in the population. Forty-eight representative isolates were all able to cause gray mold to some extent, and disease severities were significantly different between the cultivars Hongyang and Hort16A (P < 0.01). Disease severity was significantly greater on young leaves than on mature leaves (P < 0.01). No significant relationship was found between pathogenicity and geographical region, colony type, or transposon distribution. The results obtained in the present study suggest a relatively uniform species diversity of Botrytis but rich phenotypic and genetic differentiation within the B. cinerea population on kiwifruit in China. Utilizing resistant cultivars and rain-shelter cultivation instead of fungicides may be an effective approach to delaying pathogen variability.


Assuntos
Actinidia , Botrytis , Actinidia/microbiologia , Botrytis/classificação , Botrytis/genética , China , Filogenia , Doenças das Plantas/microbiologia
17.
Phys Chem Chem Phys ; 20(48): 30133-30139, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30398502

RESUMO

We theoretically propose that Rashba-type band splitting can be achieved in binary alloyed hexagonal PX nanosheets (X = As, Sb, and Bi). The lack of inversion symmetry results in an effective electric field perpendicular to the basal plane of PX, hence, leading to Rashba-type spin-orbit coupling (SOC) in the two dimensional PX nanosheets. Since the SOC strength roughly scales quadratically with atomic number, the largest band splitting is found in PBi with a Rashba coefficient of ∼1.56 eV Å, which is a huge value among two-dimensional materials. Furthermore, tensile biaxial strain can be employed to significantly enhance the strength of SOC, for instance, a Rashba coefficient of 4.41 eV Å can be realized at a strain of 10%. The huge and strain-tunable Rashba-type SOC of PBi suggests that it holds great promise for spintronic applications.

18.
Pestic Biochem Physiol ; 148: 151-158, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891366

RESUMO

Pedunsaponin A, a novel molluscicidal compound isolated from Pueraria peduncularis, exhibits strong toxicity against Pomacea canaliculata. To determine the mechanisms of Pedunsaponin A toxicity, its effects on the organs and hemocytes of P. canaliculata were examined in this study. The results showed that Pedunsaponin A had significant toxic effects on different organs of the snail, including the lungs, gills, mantle, siphon tube, ventricle, pericardial cavity, hepatopancreas, kidneys, and the major symptom of this toxicity was the loss of cilia in the lungs and gills. Additionally, in further studies on the effects of Pedunsaponin A treatment, we found that the hemocyte count was changed and hemocyte morphology was damaged, which was primarily reflected by cytoplasm leakage, nuclei deformation, and significant reductions in the number of ribosomes and granulocyte mitochondria. Based on these results and considering that blood vessels are distributed in the lungs and gills, we hypothesized that Pedunsaponin A would first destroy the cilia, which disrupt physiological activities such as respiration, excretion and feeding, and then enter the hemolymph through blood vessels, disrupt the normal function of the hemocytes and destroy the snail immune system, eventually resulting in the death of the snail.


Assuntos
Cílios/efeitos dos fármacos , Gastrópodes/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Moluscocidas/toxicidade , Saponinas/toxicidade , Triterpenos/toxicidade , Animais , Vasos Sanguíneos/efeitos dos fármacos , Cílios/patologia , Gastrópodes/imunologia , Gastrópodes/fisiologia , Brânquias/irrigação sanguínea , Brânquias/patologia , Hemócitos/efeitos dos fármacos , Hemócitos/fisiologia , Hemolinfa/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/patologia , Rim/efeitos dos fármacos , Rim/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Mitocôndrias/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Pericárdio/patologia , Ribossomos/efeitos dos fármacos
19.
IEEE J Biomed Health Inform ; 28(8): 4512-4521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38100336

RESUMO

With the rapid advancements of Big Data and computer vision, many large-scale natural visual datasets are proposed, such as ImageNet-21K, LAION-400M, and LAION-2B. These large-scale datasets significantly improve the robustness and accuracy of models in the natural vision domain. However, the field of medical images continues to face limitations due to relatively small-scale datasets. In this article, we propose a novel method to enhance medical image analysis across domains by leveraging pre-trained models on large natural datasets. Specifically, a Cross-Domain Transfer Module (CDTM) is proposed to transfer natural vision domain features to the medical image domain, facilitating efficient fine-tuning of models pre-trained on large datasets. In addition, we design a Staged Fine-Tuning (SFT) strategy in conjunction with CDTM to further improve the model performance. Experimental results demonstrate that our method achieves state-of-the-art performance on multiple medical image datasets through efficient fine-tuning of models pre-trained on large natural datasets.


Assuntos
Bases de Dados Factuais , Humanos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Big Data , Processamento de Imagem Assistida por Computador/métodos , Diagnóstico por Imagem/métodos
20.
J Agric Food Chem ; 72(25): 14152-14164, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869049

RESUMO

Golden apple snail (Pomacea canaliculata), a major alien invasive organism in China, affects food production and poses a threat to human health. Metaldehyde is a highly effective, commonly used snail killer with low toxicity. Virulence determination, tissue section, iTRAQ and RNA interference were used to systematically study the toxicity of metaldehyde on P. canaliculata. The molluscicidal activity tests showed that metaldehyde exhibits strong toxicity against P. canaliculata. Physiological and biochemical data indicate that metaldehyde can cause damage to the gills, liver, pancreas, and kidneys of snails, also reduce the oxygen consumption rate and ammonia excretion rate of golden apple snails, and cause neurological diseases. The proteome of the gill region of the golden apple snail after exposure to metaldehyde was analyzed by using iTRAQ technology. A total of 360 differential proteins were identified, and four target proteins were screened, namely, alpha-protein kinase 1 (ALPK1), cubilin (CUBN), sodium- and chloride-dependent GABA transporter 2 (GAT2), and acetylcholinesterase (AChE). RNAi was used to target the four proteins. After the ALPK1 and CUBN protein genes were interfered with by metaldehyde treatment, it was found that the mortality rate of the golden apple snail significantly increased. However, interference of GAT2 and AChE protein genes by metaldehyde led to no significant change in the mortality rates of the snails. The histopathological observation of the gill showed that the rate of cilia shedding in the gill decreased after the interference of ALPK1 and CUBN protein genes.


Assuntos
Moluscocidas , Caramujos , Animais , Caramujos/genética , Caramujos/metabolismo , Moluscocidas/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA