Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell Environ ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809156

RESUMO

In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.

2.
Plant Physiol ; 190(1): 127-145, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35258627

RESUMO

The protocorm is a structure that is formed upon germination of an orchid seed. It lacks cotyledons and is ovoid in shape. The protocorm-like body (PLB), on the other hand, is a protocorm-like organ induced from somatic tissues. PLBs have been widely used for orchid micropropagation. Because of its unique structure and its application in the orchid industry, PLB development has drawn considerable interest from orchid and developmental biologists. Our previous genome-wide comparative transcriptome study demonstrated that protocorms and PLBs share similar molecular signatures and suggested that SHOOT MERISTEMLESS (STM)-dependent organogenesis is important for PLB development. Here, we show that overexpression of Phalaenopsis aphrodite STM (PaSTM) greatly enhances PLB regeneration from vegetative tissue-based explants of Phalaenopsis orchids, confirming its regulatory role in PLB development. Expression of PaSTM restored shoot meristem function of the Arabidopsis (Arabidopsis thaliana) stm-2 mutant. Moreover, we identified class S11 MYB transcription factors (TFs) as targets downstream of PaSTM. A cis-acting element, TTGACT, identified in the promoters of S11 MYB TFs was found to be important for PaSTM binding and activation. Overexpression of PaSTM or its downstream targets, PaMYB13, PaMYB14, and PaMYB17, enhanced de novo shoot regeneration in Arabidopsis, indicating the active role of the PaSTM-S11 PaMYB module in organogenesis. In summary, our data demonstrate that PaSTM is important for PLB development. The STM-S11 MYB regulatory module is evolutionarily conserved and may regulate shoot or shoot-related organ development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Orchidaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Sementes/metabolismo , Transcriptoma
3.
Plant Physiol ; 171(4): 2682-700, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27338813

RESUMO

The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species.


Assuntos
Orchidaceae/anatomia & histologia , Orchidaceae/embriologia , Sementes/anatomia & histologia , Zigoto/metabolismo , Biomarcadores/metabolismo , Fertilização , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Orchidaceae/genética , Brotos de Planta/fisiologia , Técnicas de Embriogênese Somática de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração , Reprodução/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
4.
Plant Mol Biol ; 84(1-2): 203-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24222213

RESUMO

Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , Orchidaceae/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Dados de Sequência Molecular , Família Multigênica , Orchidaceae/química , Filogenia , Proteínas de Plantas/genética
5.
Front Plant Sci ; 13: 1054586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523623

RESUMO

Bacterial fruit blotch, caused by the seedborne gram-negative bacterium Acidovorax citrulli, is one of the most destructive bacterial diseases of cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable means to control bacterial fruit blotch remain limited. Transcriptomic analyses of tissue culture-based regeneration processes have revealed that organogenesis-associated cellular reprogramming is often associated with upregulation of stress- and defense-responsive genes. Yet, there is limited evidence supporting the notion that the reprogrammed cellular metabolism of the regenerated tissued confers bona fide antimicrobial activity. Here, we explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was potent in slowing growth of A. citrulli, reducing the number of bacteria attached to watermelon seeds, and alleviating disease symptoms of watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity can be fractionated chemically, we predict that reprogrammed cellular activity during the PLB regeneration process produces metabolites with antibacterial activity. In conclusion, our data demonstrated the antibacterial activity in developing PLBs and revealed the potential of using orchid PLBs to discover chemicals to control bacterial fruit blotch disease.

6.
Front Plant Sci ; 10: 1594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850050

RESUMO

Somatic embryogenesis is commonly used for clonal propagation of a wide variety of plant species. Induction of protocorm-like-bodies (PLBs), which are capable of developing into individual plants, is a routine tissue culture-based practice for micropropagation of orchid plants. Even though PLBs are often regarded as somatic embryos, our recent study provides molecular evidence to argue that PLBs are not derived from somatic embryogenesis. Here, we report and characterize the somatic embryonic tissues induced by Phalaenopsis aphrodite LEAFY COTYLEDON1 (PaLEC1) in Phalaenopsis equestris. We found that PaLEC1-induced somatic tissues are morphologically different from PLBs, supporting our molecular study that PLBs are not of somatic embryonic origin. The embryonic identity of PaLEC1-induced embryonic tissues was confirmed by expression of the embryonic-specific transcription factors FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3), and seed storage proteins 7S GLOBULIN and OLEOSIN. Moreover, PaLEC1-GFP protein was found to be associated with the Pa7S-1 and PaFUS3 promoters containing the CCAAT element, supporting that PaLEC1 directly regulates embryo-specific processes to activate the somatic embryonic program in P. equestris. Despite diverse embryonic structures, PaLEC1-GFP-induced embryonic structures are pluripotent and capable of generating new shoots. Our study resolves the long-term debate on the developmental identity of PLB and suggests that somatic embryogenesis may be a useful approach to clonally propagate orchid seedlings.

7.
Front Plant Sci ; 9: 843, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988409

RESUMO

The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein-protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.

8.
Plant Reprod ; 29(1-2): 179-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016359

RESUMO

KEY MESSAGE: Pollen biology in P. aphrodite. Orchids have a distinct reproductive program. Pollination triggers ovule development and differentiation within flowers, and fertilization occurs days to months after pollination. It is unclear how pollen tubes travel through the developing ovaries during ovule development and when pollen tubes arrive at the mature embryo sac to achieve fertilization. Here, we report a robust staining protocol to image and record the timing of pollen germination, progressive growth of pollen tubes in ovaries, and arrival of pollen tubes at embryo sacs in Phalaenopsis aphrodite. The pollen germinated and pollen tubes entered the ovary 3 days after pollination. Pollen tubes continued to grow and filled the entire cavity of the ovary as the ovary elongated and ovules developed. Pollen tubes were found to enter the matured embryo sacs at approximately 60-65 days after pollination in an acropetal manner. Moreover, these temporal changes in developmental events such as growth of pollen tubes and fertilization were associated with expression of molecular markers. In addition, we developed an in vitro pollen germination protocol, which is valuable to enable studies on pollen tube guidance and tip growth regulation in Phalaenopsis orchids and possibly in other orchid species.


Assuntos
Técnicas de Cultura , Fertilização , Orchidaceae/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Proteínas com Domínio LIM/metabolismo , Orchidaceae/metabolismo , Orchidaceae/ultraestrutura , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestrutura
9.
Plant Signal Behav ; 11(10): e1237331, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27668884

RESUMO

One of the distinct reproductive programs in orchid species is pollination-triggered ovule development and megasporogenesis. During sexual reproduction, fertilization occurs days to months after pollination. The molecular mechanisms evolved to carry out this strategic reproductive program remain unclear. In the August issue of Plant Physiology 1 , we report comprehensive studies of comparative genome-wide gene expression in various reproductive tissues and the molecular events associated with developmental transitions unique to sexual reproduction of Phalaenopsis aphrodite. Transcriptional factors and signaling components whose expression is specifically enriched in interior ovary tissues when fertilization occurs and embryos start to develop have been identified. Here, we report verification of additional fertilization-associated genes, DOMAINS REARRANGED METHYLTRANSFERASE 1 (PaDRM1), CHROMOMETHYLTRANSFERASE 1 (PaCMT1), SU(VAR)3-9 RELATED PROTEIN 1 (PaSUVR1), INDOLE-3-ACETIC ACID inducible 30-like 1 (PaIAA30L1), and ETHYLENE INSENSITIVE 3-like 1 (PaEIN3L1), and discuss their potential roles in gametophyte development, epigenetic reprogramming, and hormone regulation during fertilization and establishment of embryo development in Phalaenopsis orchids.


Assuntos
Orchidaceae/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução/genética , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA