Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(2): 386-400.e11, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103558

RESUMO

The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Transdução de Sinais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Mamíferos/metabolismo
2.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951215

RESUMO

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Assuntos
RNA , Ubiquitina-Proteína Ligases , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Formaldeído/toxicidade , Aldeídos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nucleic Acids Res ; 52(12): 6945-6963, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38783095

RESUMO

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.


Assuntos
Senescência Celular , Quinase 4 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Dano ao DNA , Proteínas Interatuantes com Canais de Kv , Senescência Celular/efeitos da radiação , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Radiação Ionizante , Reparo do DNA , Regulação da Expressão Gênica/efeitos da radiação , Proteínas Repressoras
4.
Proc Natl Acad Sci U S A ; 120(21): e2220787120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186846

RESUMO

Nucleic acid therapeutics are becoming an important drug modality, offering the unique opportunity to address "undruggable" targets, respond rapidly to evolving pathogens, and treat diseases at the gene level for precision medicine. However, nucleic acid therapeutics have poor bioavailability and are chemolabile and enzymolabile, imposing the need for delivery vectors. Dendrimers, by virtue of their well-defined structure and cooperative multivalence, represent precision delivery systems. We synthesized and studied bola-amphiphilic dendrimers for cargo-selective and on-demand delivery of DNA and small interfering RNA (siRNA), both important nucleic acid therapeutics. Remarkably, superior performances were achieved for siRNA delivery with the second-generation dendrimer, yet for DNA delivery with the third generation. We systematically studied these dendrimers with regard to cargo binding, cellular uptake, endosomal release, and in vivo delivery. Differences in size both of the dendrimers and their nucleic acid cargos impacted the cooperative multivalent interactions for cargo binding and release, leading to cargo-adaptive and selective delivery. Moreover, both dendrimers harnessed the advantages of lipid and polymer vectors, while offering nanotechnology-based tumor targeting and redox-responsive cargo release. Notably, they allowed tumor- and cancer cell-specific delivery of siRNA and DNA therapeutics for effective treatment in different cancer models, including aggressive and metastatic malignancies, outperforming the currently available vectors. This study provides avenues to engineer tailor-made vectors for nucleic acid delivery and precision medicine.


Assuntos
Dendrímeros , Neoplasias , Ácidos Nucleicos , Humanos , Dendrímeros/química , Ácidos Nucleicos/química , RNA Interferente Pequeno/metabolismo , DNA , RNA de Cadeia Dupla
5.
Hum Mol Genet ; 32(8): 1334-1347, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36383401

RESUMO

More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.


Assuntos
Anexina A2 , Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Janus Quinases/metabolismo , Estudo de Associação Genômica Ampla , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Hepatócitos/metabolismo , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Fatores de Transcrição/genética , Hepatite B/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/farmacologia , Anexina A2/genética
6.
Nature ; 559(7713): 211-216, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973724

RESUMO

Liquid-liquid phase separation has been shown to underlie the formation and disassembly of membraneless organelles in cells, but the cellular mechanisms that control this phenomenon are poorly understood. A prominent example of regulated and reversible segregation of liquid phases may occur during mitosis, when membraneless organelles disappear upon nuclear-envelope breakdown and reappear as mitosis is completed. Here we show that the dual-specificity kinase DYRK3 acts as a central dissolvase of several types of membraneless organelle during mitosis. DYRK3 kinase activity is essential to prevent the unmixing of the mitotic cytoplasm into aberrant liquid-like hybrid organelles and the over-nucleation of spindle bodies. Our work supports a mechanism in which the dilution of phase-separating proteins during nuclear-envelope breakdown and the DYRK3-dependent degree of their solubility combine to allow cells to dissolve and condense several membraneless organelles during mitosis.


Assuntos
Mitose , Organelas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Membrana Nuclear/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Transporte Proteico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/biossíntese , Solubilidade , Fuso Acromático/metabolismo , Estresse Fisiológico
7.
PLoS Genet ; 17(6): e1009600, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166401

RESUMO

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Enterotoxinas/genética , Hypocreales/patogenicidade , Imunidade Inata , Fatores de Transcrição STAT/genética , Esporos Fúngicos/patogenicidade , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Coevolução Biológica , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Enterotoxinas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Hypocreales/crescimento & desenvolvimento , Longevidade/genética , Longevidade/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Vesículas Transportadoras/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
J Infect Dis ; 228(6): 694-703, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932045

RESUMO

BACKGROUND: Alpha kinase 1 (ALPK1) agonist has recently been reported to demonstrate anti-hepatitis B virus (HBV) efficacy via activating NF-κB signaling, which is crucial for maximizing interferon (IFN) responses. Here, we investigated the impact of ALPK1 on HBV replication and explored ALPK1 variants for predicting the response to pegylated IFN-α (PegIFN-α) treatment. METHODS: The potential anti-HBV effect of ALPK1 was evaluated in HBV-integrated and HBV-infected hepatoma cells. The potentially functional genetic variants of ALPK1 were screened out, and their correlations with PegIFN-α treatment response were assessed in 945 hepatitis B e antigen (HBeAg)-positive patients with chronic hepatitis B (CHB). RESULTS: We revealed that ALPK1 inhibited HBV replication in hepatocytes via activating the JAK-STAT pathway. ALPK1 overexpression improved the anti-HBV effect of IFN-α in cell models. A missense variant, rs35389530 (P660L), of ALPK1 was strongly associated with combined response (CR; namely, HBeAg seroconversion and HBV DNA level <3.3log10 IU/mL) to PegIFN-α treatment in patients with CHB (P = 2.12 × 10-6). Moreover, a polygenic score integrating ALPK1_rs35389530 and 2 additional genetic variants was further significantly associated with CR (Ptrend = 9.28 × 10-7), hepatitis B surface antigen (HBsAg) level (Ptrend = .0002), and HBsAg loss (Ptrend = .025). CONCLUSIONS: The anti-HBV effects of ALPK1 through activating JAK-STAT pathway provides a new perspective for CHB therapy. ALPK1_rs35389530 and polygenic score are potential biomarkers to predict PegIFN-α treatment response and may be used for optimizing CHB treatment.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Antígenos de Superfície da Hepatite B/uso terapêutico , Antígenos E da Hepatite B , Janus Quinases/uso terapêutico , Fatores de Transcrição STAT/uso terapêutico , Transdução de Sinais , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , DNA Viral , Polietilenoglicóis/uso terapêutico , Replicação Viral , Resultado do Tratamento
9.
EMBO J ; 38(14): e101082, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304626

RESUMO

Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Linfócitos/metabolismo , Animais , Autoantígenos/metabolismo , Galinhas , Células HEK293 , Homeostase , Humanos , Células Jurkat , Linfócitos/citologia , Proteômica
10.
BMC Plant Biol ; 23(1): 28, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36635619

RESUMO

BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.


Assuntos
Arabidopsis , Betalaínas , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
Blood ; 138(13): 1182-1193, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33945603

RESUMO

Events mediated by the P-selectin/PSGL-1 pathway play a critical role in the initiation and propagation of venous thrombosis by facilitating the accumulation of leukocytes and platelets within the growing thrombus. Activated platelets and endothelium express P-selectin, which binds P-selectin glycoprotein ligand-1 (PSGL-1) that is expressed on the surface of all leukocytes. We developed a pegylated glycomimetic of the N terminus of PSGL-1, PEG40-GSnP-6 (P-G6), which proved to be a highly potent P-selectin inhibitor with a favorable pharmacokinetic profile for clinical translation. P-G6 inhibits human and mouse platelet-monocyte and platelet-neutrophil aggregation in vitro and blocks microcirculatory platelet-leukocyte interactions in vivo. Administration of P-G6 reduces thrombus formation in a nonocclusive model of deep vein thrombosis with a commensurate reduction in leukocyte accumulation, but without disruption of hemostasis. P-G6 potently inhibits the P-selectin/PSGL-1 pathway and represents a promising drug candidate for the prevention of venous thrombosis without increased bleeding risk.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/uso terapêutico , Selectina-P/antagonistas & inibidores , Trombose/tratamento farmacológico , Animais , Hemostasia/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/efeitos dos fármacos , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Trombose/metabolismo
12.
Anal Biochem ; 664: 115046, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641031

RESUMO

The early diagnosis of coronavirus disease 2019 (COVID-19) is dependent on the specific and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Herein, we develop a highly sensitive and specific electrochemical biosensor for SARS-CoV-2 target RNA detection based on the integration of protospacer adjacent motif (PAM)-free cascaded toehold-mediated strand displacement reaction (TSDR) and CRISPR-Cas12a (PfTSDR-CRISPR). In this study, each target is transformed into multiple DNA substrates with bubble structure in the seed region by the cascaded TSDR, which can directly hybridize with guide RNA (gRNA) without PAM requirement and then activate CRISPR-Cas12a's trans-cleavage activity. Subsequently, the hairpin DNA modified with methylene blue (MB-HP) is cleaved by activated CRISPR-Cas12a. Therefore, as MB leaves the electrode surface, a decreased current signal is obtained. With the involvement of PAM-free cascaded TSDRs and CRISPR-Cas12a amplification strategy, the PfTSDR-CRISPR-based electrochemical biosensor achieves the detection of target RNA as low as 40 aM. The biosensor has high sequence specificity, reliability and robustness. Thanks to the PAM-free cascaded TSDR, the biosensor can achieve universal detection of different target RNA without redesigning gRNA sequence of CRISPR-Cas12a. In addition, this biosensor successfully detects SARS-CoV-2 target RNA in complex samples, which highlights its potential for diagnosing COVID-19.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética , RNA Guia de Sistemas CRISPR-Cas
13.
Curr Diab Rep ; 23(9): 245-252, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329442

RESUMO

PURPOSE OF REVIEW: Depression is prevalent and common among individuals living with diabetes. The aim of this review is to systematically assess and meta-analyze the treatment effect of cognitive-behavioral therapy for depression (and other affective outcomes) among patients with diabetes. RECENT FINDINGS: Earlier investigations found both psychosocial and pharmacological interventions, including cognitive-behavioral therapy, were promising in managing depression in patients with diabetes, though these findings remain inclusive due to poor study designs and a small number of trials included, which calls for a comprehensive systematic review and meta-analysis. A total of 33 studies (89 effect sizes) reported a moderate and statistically significant treatment effect of cognitive-behavioral therapy for depressive symptoms among individuals with diabetes (d = 0.301, 95% CI 0.115-0.487, p < 0.001). On average, cognitive-behavioral therapy was effective for psychological stress/distress outcomes but not for anxiety or physiological outcomes. The findings of the study confirmed CBT as an effective treatment option for depression among diabetes patients and identified important areas for future research.


Assuntos
Terapia Cognitivo-Comportamental , Diabetes Mellitus , Humanos , Depressão/terapia , Ansiedade/terapia , Transtornos de Ansiedade/terapia , Diabetes Mellitus/terapia
14.
Physiol Plant ; 175(3): e13923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37133873

RESUMO

The SQUAMOSA promoter binding protein-like (SPL) gene family is a unique family of plant-specific transcription factors (TFs), which plays vital roles in a variety of plant biological processes. Its role in betalain biosynthesis in Hylocereus undantus; however, is still unclear. Here, we report a total of 16 HuSPL genes from the pitaya genome, which were unevenly distributed among nine chromosomes. The HuSPL genes were clustered into seven groups, and most HuSPLs within the same group shared similar exon-intron structures and conserved motifs. Eight segment replication events in the HuSPL gene family were the main driving force behind the gene family expansion. Nine of the HuSPL genes had potential target sites for Hmo-miR156/157b. Hmo-miR156/157b-targeted HuSPLs exhibited differential expression patterns compared with constitutive expression patterns of most Hmo-miR156/157b-nontargeted HuSPLs. The expression of Hmo-miR156/157b gradually increased during fruit maturation, while the expression of Hmo-miR156/157b-targeted HuSPL5/11/14 gradually decreased. In addition, the lowest expression level of Hmo-miR156/157b-targeted HuSPL12 was detected 23rd day after flowering, when the middle pulps started to turn red. HuSPL5, HuSPL11, HuSPL12, and HuSPL14 were nucleus-localized proteins. HuSPL12 could inhibit the expression of HuWRKY40 by binding to its promoter. Results from yeast two-hybrid and bimolecular fluorescence complementation assays showed that HuSPL12 could interact with HuMYB1, HuMYB132, or HuWRKY42 TFs responsible for betalain biosynthesis. The results of the present study provide an essential basis for future regulation of betalain accumulation in pitaya.


Assuntos
MicroRNAs , Proteínas de Plantas , Proteínas de Plantas/metabolismo , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762287

RESUMO

Pitaya (Hylocereus spp.) is a member of the cactus family that is native to Central and South America but is now cultivated throughout the sub-tropical and tropical regions of the world. It is of great importance due to its nutritional, ornamental, coloring, medicinal, industrial, and high consumption values. In order to effectively utilize and develop the available genetic resources, it is necessary to appreciate and understand studies pertaining to the usage, origin, nutrition, diversity, evaluation, characterization, conservation, taxonomy, and systematics of the genus Hylocereus. Additionally, to gain a basic understanding of the biology of the plant, this review has also discussed how biotechnological tools, such as cell and tissue culture, micropropagation (i.e., somatic embryogenesis, organogenesis, somaclonal variation, mutagenesis, androgenesis, gynogenesis, and altered ploidy), virus-induced gene silencing, and molecular marker technology, have been used to enhance pitaya germplasm.

16.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108449

RESUMO

Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.


Assuntos
Cromossomos , Elementos de DNA Transponíveis , Animais , Elementos de DNA Transponíveis/genética , Células-Tronco , Proteína HMGB2/metabolismo
18.
BMC Plant Biol ; 21(1): 394, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418959

RESUMO

BACKGROUND: To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. RESULTS: The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. CONCLUSIONS: Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.


Assuntos
Brassica/genética , Brassica/metabolismo , Glucosinolatos/genética , Glucosinolatos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
19.
Appl Opt ; 60(25): 7574-7580, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613223

RESUMO

Three types of alumina surface irradiated by laser are simulated in this study to investigate stray light ablation. Results indicate that temperature fields of triangular and rectangular microstructures exhibit the "head effect," while overall still exhibit Gaussian distributions. For the stress, there is a notable difference between the microstructure surface and the ideal surface. The most stress concentration occurs at the corners on the microstructure surface termed as the "bottom effect." The maximum tensile stress of a triangular microstructure appears below the midline of the slope. The location of the maximum tensile stress on the triangle first shifts down and then up. The inflection point is 0.9 µm in height of the triangle.

20.
PLoS Genet ; 14(7): e1007494, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30036395

RESUMO

Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Proteínas de Ciclo Celular/imunologia , Evolução Molecular , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/imunologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/imunologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Ligação Proteica/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA