Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38929484

RESUMO

Cafestol, a bioactive compound found in coffee, has attracted considerable attention due to its potential impact on cardiovascular health. This review aims to comprehensively explore the association between cafestol and cardiovascular diseases. We delve into the mechanisms through which cafestol influences lipid metabolism, inflammation, and endothelial function, all of which are pivotal in cardiovascular pathophysiology. Moreover, we meticulously analyze epidemiological studies and clinical trials to elucidate the relationship between cafestol and cardiovascular outcomes. Through a critical examination of existing literature, we aim to provide insights into the potential benefits and risks associated with cafestol concerning cardiovascular health.


Assuntos
Doenças Cardiovasculares , Humanos , Café , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768628

RESUMO

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined. In the present study, we showed a rapid and marked induction of ATF3 mRNA throughout ischemia-reperfusion in a middle cerebral artery (MCA) occlusion model. Although the level of CTMP mRNA was quickly induced upon ischemia, its level showed only a mild increase after reperfusion. With the gain-of-function approach, both pre- and post-ischemic administration of Ad-ATF3 ameliorated brain infarct and neurological deficits. Whereas, with the loss-of-function approach, ATF3 knockout (KO) mice showed bigger infarct and worse functional outcome after ischemia. In addition, these congenital defects were rescued upon reintroducing ATF3 to the brain of KO mice. ATF3 overexpression led to a lower level of CTMP and a higher level of p-Akt(473) in the ischemic brain. On the contrary, ATF3 KO resulted in upregulation of CTMP and downregulation of p-Akt(473) instead. Furthermore, post-ischemic CTMP siRNA knockdown led to smaller infarct and better behaviors. CTMP siRNA knockdown increased the level of p-Akt(473), but did not alter the ATF3 level in the ischemic brain, upholding the ATF3→CTMP signal cascade. In summary, our proof-of-principle experiments support the existence of neuroprotective ATF3→CTMP signal cascade regulating the ischemic brain. Furthermore, these results suggest the therapeutic potential for both ATF3 overexpression and CTMP knockdown for stroke treatment.


Assuntos
Isquemia Encefálica , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Camundongos Knockout , Infarto Encefálico/genética , RNA Interferente Pequeno/genética , Infarto Cerebral , Palmitoil-CoA Hidrolase/metabolismo
3.
J Cardiovasc Nurs ; 34(2): 106-114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30363015

RESUMO

OBJECTIVE: To evaluate whether home or ambulatory blood pressure (BP) monitoring was associated with preclinical hypertensive cardiovascular target organ damage (TOD). METHODS: We enrolled participants with prehypertension and stage 1 hypertension from 11 medical centers within the Taiwan hypertension-associated cardiac disease consortium. Recordings of clinical BP measurement, ambulatory BP monitoring for 24 hours, and home BP monitoring during morning and evening were made. The measured parameters of target organ damage included left ventricular mass index (LVMI), left atrial volume index (LAVI), and carotid-femoral pulse wave velocity (PWV). RESULTS: Data were collected from 561 study participants (mean age, 65.0 ± 10.8 years; men, 61.3%). Morning and evening home BP values were slightly higher than the daytime and nighttime ABP values (difference for systolic morning-daytime/evening-nighttime, 7.3 ± 14.2/11.3 ± 18.5 mm Hg, P < .001; for diastolic, 5.4 ± 9.4/7.3 ± 12.1, P < .001). Daytime ambulatory (r = 0.114), nighttime ambulatory (r = 0.130), morning home (r = 0.310), and evening home (r = 0.220) systolic BPs (SBPs) were all associated with LVMI (all P < .05). The correlation coefficient was significantly greater for the relationship between daytime home SBP and LVMI than for the relationship between ambulatory SBP and LVMI (P < .01). The goodness of fit of the association between SBP and LVMI improved by adding home daytime SBP to the other SBPs (P < .001). Similar findings were observed for LAVI, but not for PWV. CONCLUSION: These findings indicate that morning SBP assessed by home monitoring appears to be a better predictor than other BP measures to determine preclinical hypertensive cardiovascular damage in patients with early-stage hypertension.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Doenças Cardiovasculares/etiologia , Hipertensão/complicações , Hipertensão/diagnóstico , Pré-Hipertensão/complicações , Pré-Hipertensão/diagnóstico , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Biomed Sci ; 24(1): 85, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141644

RESUMO

BACKGROUND: This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs). METHODS: The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 µg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs. RESULTS: Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 µg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion. CONCLUSIONS: Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.


Assuntos
Quimiocina CCL2/genética , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/farmacologia , Receptor PAR-2/genética , Transdução de Sinais , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Humanos , Receptor PAR-2/metabolismo
5.
Pharmacology ; 98(1-2): 42-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050899

RESUMO

BACKGROUND: Nicorandil, a mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channel opener, exerts protective effects on the cardiovascular system. This study examined the effect of nicorandil on cyclic strain-induced interleukin-8 (IL-8) expression in human umbilical vein endothelial cells (HUVECs). METHODS: Cultured HUVECs were exposed to cyclic strain in the presence or absence of nicorandil (1-10 µmol/l); we then analyzed IL-8 expression. We also assessed the effects of nicorandil on heme oxygenase-1 (HO-1) expression and cyclic strain-modulated IL-8 expression after HO-1 silencing in HUVECs. SUMMARY: HUVECs exposed to cyclic strain showed increased IL-8 messenger RNA expression and protein secretion. Nicorandil (1-10 µmol/l) inhibited cyclic strain-induced IL-8 expression, whereas 5-hydroxydecanoate (100 µmol/l), a selective inhibitor of the mitoKATP channel, completely reversed the inhibitory effects of nicorandil on cyclic strain-induced IL-8 expression. We demonstrated that nicorandil increased HO-1 expression in HUVECs. In addition, cobalt protoporphyrin (10 µmol/l), an inducer of HO-1 expression, mimicked the effects of nicorandil and inhibited IL-8 expression under cyclic strain, whereas zinc protoporphyrin IX (10 µmol/l), an inhibitor of HO-1 expression, antagonized the effect of nicorandil. HO-1 silencing significantly abrogated the inhibitory effects of nicorandil on cyclic strain-induced IL-8 expression, suggesting that HO-1 plays a role in the mechanism of action of nicorandil. KEY MESSAGES: This study is the first to report that nicorandil inhibits cyclic strain-induced IL-8 expression through the induction of HO-1 expression in HUVECs. This finding provides valuable new insight into the molecular pathways contributing to the vasoprotective effects of nicorandil.


Assuntos
Fármacos Cardiovasculares/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-8/metabolismo , Nicorandil/farmacologia , Estresse Mecânico , Fenômenos Biomecânicos , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-8/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
6.
Clin Exp Pharmacol Physiol ; 42(6): 632-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25932745

RESUMO

Lycopene is the most potent active antioxidant among the major carotenoids, and its use has been associated with a reduced risk for cardiovascular disease (CVD). Endothelin-1 (ET-1) is a powerful vasopressor synthesized by endothelial cells and plays a crucial role in the pathophysiology of CVD. However, the direct effects of lycopene on vascular endothelial cells have not been fully described. This study investigated the effects of lycopene on cyclic strain-induced ET-1 gene expression in human umbilical vein endothelial cells (HUVECs) and identified the signal transduction pathways that are involved in this process. Cultured HUVECs were exposed to cyclic strain (20% in length, 1 Hz) in the presence or absence of lycopene. Lycopene inhibited strain-induced ET-1 expression through the suppression of reactive oxygen species (ROS) generation through attenuation of p22(phox) mRNA expression and NAD(P)H oxidase activity. Furthermore, lycopene inhibited strain-induced ET-1 secretion by reducing ROS-mediated extrace-llular signal-regulated kinase (ERK) phosphorylation. Conversely, lycopene treatment enhanced heme oxygenase-1 (HO-1) gene expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, followed by induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation; in addition, HO-1 silencing partially inhibited the repressive effects of lycopene on strain-induced ET-1 expression. In summary, our study showed, for the first time, that lycopene inhibits cyclic strain-induced ET-1 gene expression through the suppression of ROS generation and induction of HO-1 in HUVECs. Therefore, this study provides new valuable insight into the molecular pathways that may contribute to the proposed beneficial effects of lycopene on the cardiovascular system.


Assuntos
Carotenoides/farmacologia , Endotelina-1/biossíntese , Heme Oxigenase-1/biossíntese , Células Endoteliais da Veia Umbilical Humana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Mecânico , Células Cultivadas , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Licopeno
7.
Mol Pharmacol ; 85(5): 682-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24550138

RESUMO

Activating transcription factor 3 (ATF3), a cAMP response element-binding protein/ATF family transcription factors member, has been implicated in the cardiovascular and inflammatory system and is rapidly induced by ischemic-reperfusion injuries. We performed transverse aortic banding (TAB) experiments using ATF3 gene-deleted mice (ATF3(-/-)) and wild-type (WT) mice to determine what effect it might have on heart failure induced by pressure overloading. Compared with the WT mice, ATF3(-/-) mice were found by echocardiography to have decreased left ventricular contractility with loss of normal cardiac hypertrophic remodeling. The ATF3(-/-) mice had greater numbers of terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling-positive cells and higher levels of activated caspase-3, as well as more apoptosis. Restoration of ATF3 expression in the heart of ATF3(-/-) mice by adenovirus-induced ATF3 treatment significantly improved cardiac contractility after TAB. The results from molecular and biochemical analyses, including chromatin immune-precipitation and in vitro /in vivo promoter assays, showed that ATF3 bound to the ATF/cAMP response element of the Beclin-1 promoter and that ATF3 reduced autophagy via suppression of the Beclin-1-dependent pathway. Furthermore, infusion of tert-butylhydroquinone (tBHQ), a selective ATF3 inducer, increased the expression of ATF3 via the nuclear factor erythroid 2-related transcriptional factor, inhibited TAB-induced cardiac dilatation, and increased left ventricular contractility, thereby rescuing heart failure. Our study identified a new epigenetic regulation mediated by the stress-inducible gene ATF3 on TAB-induced cardiac dysfunction. These findings suggest that the ATF3 activator tBHQ may have therapeutic potential for the treatment of pressure-overload heart failure induced by chronic hypertension or other pressure overload mechanisms.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Proteínas Reguladoras de Apoptose/biossíntese , Autofagia/fisiologia , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Fator 3 Ativador da Transcrição/agonistas , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Células HEK293 , Humanos , Hidroquinonas/farmacologia , Hidroquinonas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
8.
Life (Basel) ; 14(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063659

RESUMO

Diastolic dysfunction, a prevalent condition characterized by impaired relaxation and filling of the left ventricle, significantly contributes to heart failure with preserved ejection fraction (HFpEF). Galectin-3, a ß-galactoside-binding lectin, has garnered attention as a potential biomarker and mediator of fibrosis and inflammation in cardiovascular diseases. This comprehensive review investigates the impact of galectin-3 on diastolic dysfunction. We explore its molecular mechanisms, including its involvement in cellular signaling pathways and interaction with components of the extracellular matrix. Evidence from both animal models and clinical studies elucidates galectin-3's role in cardiac remodeling, inflammation, and fibrosis, shedding light on the underlying pathophysiology of diastolic dysfunction. Additionally, we examine the diagnostic and therapeutic implications of galectin-3 in diastolic dysfunction, emphasizing its potential as both a biomarker and a therapeutic target. This review underscores the significance of comprehending galectin-3's role in diastolic dysfunction and its promise in enhancing diagnosis and treatment approaches for HFpEF patients.

9.
Clin Exp Pharmacol Physiol ; 39(1): 63-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22032308

RESUMO

1. Tanshinone IIA, one of the active components of the Radix of Salvia miltiorrhiza, is used in traditional Chinese medicine to treat cardiovascular diseases. However, the intracellular mechanism of action of tanshinone IIA remain to be determined. The aims of the present study were to test the hypothesis that tanshinone IIA alters strain-induced endothelin (ET)-1 expression and nitric oxide (NO) production, as well as to identify the putative signalling pathways involved, in human umbilical vein endothelial cells (HUVEC). 2. Cultured HUVEC were exposed to cyclic strain in the presence of 1-10 µmol/L tanshinone IIA. Expression of ET-1 was examined by reverse transcription-polymerase chain reaction and ELISA. Phosphorylation of endothelial NO synthase (eNOS) and activating transcription factor (ATF) 3 was assessed by western blot analysis. 3. Tanshinone IIA (3 and 10 µmol/L) inhibited strain-induced ET-1 expression. In contrast, NO production, eNOS phosphorylation and ATF3 expression were enhanced by tanshinone IIA. The eNOS inhibitor N(G) -nitro-L-arginine methyl ester (l-NAME; 100 µmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (5 µmol/L) and the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; 10 µmol/L) inhibited tanshinone IIA-induced increases in ATF3 expression. Moreover, treatment of HUVEC with either an NO donor (3,3-bis [aminoethyl]-1-hydroxy-2-oxo-1-triazene; 500 µmol/L) or an ATF3 activator (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal; 5 µmol/L) resulted in the repression of strain-induced ET-1 expression. The inhibitory effect of tanshinone IIA on strain-induced ET-1 expression was significantly attenuated by l-NAME, ODQ and the transfection of small interfering RNA for ATF3. 4. In conclusion, tanshinone IIA inhibits strain-induced ET-1 expression by increasing NO and upregulating ATF3 in HUVEC. The present study provides important new insights into the molecular pathways that may contribute to the beneficial effects of tanshinone IIA in the cardiovascular system.


Assuntos
Abietanos/farmacologia , Doenças Cardiovasculares/prevenção & controle , Microambiente Celular , Regulação para Baixo/efeitos dos fármacos , Endotelina-1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Fator 3 Ativador da Transcrição/agonistas , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Endotelina-1/genética , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel
10.
J Pers Med ; 12(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35330415

RESUMO

Background: This 12-year study aimed to compare the longitudinal change in left ventricular diastolic dysfunction (LVDD) between healthy elderly, coronary artery disease (CAD), and hypertension (HTN) patients. Methods: From 2008 to 2020, 1476 patients were included, and 3181 echocardiography examinations were conducted. Finally, 130 participants (36 healthy elderly (79.39 ± 9.51 years old), 51 with CAD (68.31 ± 12.09 years old), and 43 with HTN (68.31 ± 12.09 years old)) with more than a 10-year follow-up period were included in the final analysis. Results: The change in diastolic function was different among these subjects according to the integrated score index (elderly vs. HTN, p = 0.01; CAD vs. HTN, p = 0.01), septal E/e' ratio (elderly vs. HTN, p < 0.001; CAD vs. HTN, p = 0.01), lateral E/e' ratio (elderly vs. HTN, p < 0.001; CAD vs. HTN, p < 0.001), and NYHA functional class (elderly vs. HTN, p = 0.03; CAD vs. HTN, p < 0.001). Additionally, per one-year increase in age, the integrated score index increased 0.2 in the healthy elderly, 0.15 in the CAD, and 0.06 in the HTN patients (all p < 0.05). Conclusion: Under aggressive treatment, diastolic function was relatively preserved in HTN subjects with aging in comparison with elderly and CAD subjects.

11.
Crit Care Med ; 39(5): 984-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21263314

RESUMO

OBJECTIVE: The inflammatory process is associated with cardiac diastolic dysfunction, which has been demonstrated to be an independent prognostic marker for the mortality of critically ill patients. We investigated the association among inflammatory cytokines (tumor necrosis factor-α and interleukin-6), diastolic heart failure, and the possible molecular mechanism. DESIGN: Prospective case-controlled cohort and molecular studies. SETTING: University hospital and research laboratory. SUBJECTS: Patients with a diagnosis of diastolic heart failure by echocardiography and matched control subjects from the general population (study group 1) and also subjects from the intensive care unit (study group 2). Sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene expression and diastolic calcium decay in HL-1 cardiomyocytes were used as molecular phenotypes of diastolic heart failure. INTERVENTIONS: Soluble plasma levels of tumor necrosis factor-α and interleukin-6 were measured in all subjects. An approximate 1.75-kb promoter of the SERCA2 gene was cloned to the pGL3 luciferase reporter. The effect of tumor necrosis factor-α and interleukin-6 on SERCA2 gene expression and diastolic calcium decay of HL-1 cardiomyocytes were investigated. MEASUREMENTS AND MAIN RESULTS: Patients with diastolic heart failure had significantly higher plasma levels of tumor necrosis factor-α and interleukin-6 than the control subjects. Significant correlations (p < .01 for each) were found for tumor necrosis factor-α and E/Em (r = .87) and E/A (r = -0.69), and for interleukin-6 and E/Em (r = .80) and E/A (r = -0.65). Cytokine levels were also correlated with diastolic function in critically ill patients (study group 2), and diastolic function improved significantly in association with decrease of cytokines. Tumor necrosis factor-α, interleukin-6, and sera from critically ill patients downregulated the expression of the SERCA2 gene. Tumor necrosis factor-α and interleukin-6 also delayed the diastolic calcium reuptake and decay in cardiomyocytes. CONCLUSIONS: Through downregulation of SERCA2 gene expression, inflammatory cytokines may cause cardiac diastolic dysfunction by decreasing diastolic calcium reuptake. Our study may suggest novel therapeutic strategies for diastolic heart failure and critically ill patients by modulating inflammatory reactions.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Insuficiência Cardíaca Diastólica/sangue , Interleucina-6/metabolismo , Retículo Sarcoplasmático/metabolismo , Fator de Necrose Tumoral alfa/sangue , Idoso , Idoso de 80 Anos ou mais , ATPases Transportadoras de Cálcio/genética , Estudos de Casos e Controles , Estudos de Coortes , Estado Terminal , Citocinas/sangue , Citocinas/metabolismo , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Insuficiência Cardíaca Diastólica/genética , Insuficiência Cardíaca Diastólica/mortalidade , Humanos , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Masculino , Miócitos Cardíacos/metabolismo , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Valores de Referência , Retículo Sarcoplasmático/genética , Sensibilidade e Especificidade , Análise de Sobrevida
12.
Neuromolecular Med ; 23(1): 199-210, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33025396

RESUMO

Neuroinflammation has been shown to exacerbate ischemic brain injury, and is considered as a prime target for the development of stroke therapies. Clinacanthus nutans Lindau (C. nutans) is widely used in traditional medicine for treating insect bites, viral infection and cancer, due largely to its anti-oxidative and anti-inflammatory properties. Recently, we reported that an ethanol extract from the leaf of C. nutans could protect the brain against ischemia-triggered neuronal death and infarction. In order to further understand the molecular mechanism(s) for its beneficial effects, two experimental paradigms, namely, in vitro primary cortical neurons subjected to oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery (MCA) occlusion, were used to dissect the anti-inflammatory effects of C. nutans extract. Using promoter assays, immunofluorescence staining, and loss-of-function (siRNA) approaches, we demonstrated that transient OGD led to marked induction of IL-1ß, IL-6 and TNFα, while pretreatment with C. nutans suppressed production of inflammatory cytokines in primary neurons. C. nutans inhibited IL-1ß transcription via preventing NF-κB/p65 nuclear translocation, and siRNA knockdown of either p65 or IL-1ß mitigated OGD-mediated neuronal death. Correspondingly, post-ischemic treatment of C. nutans attenuated IκBα degradation and decreased IL-1ß, IL-6 and TNFα production in the ischemic brain. Furthermore, IL-1ß siRNA post-ischemic treatment reduced cerebral infarct, thus mimicking the beneficial effects of C. nutans. In summary, our findings demonstrated the ability for C. nutans to suppress NF-κB nuclear translocation and inhibit IL-1ß transcription in ischemic models. Results further suggest the possibility for using C. nutans to prevent and treat stroke patients.


Assuntos
Acanthaceae/química , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Interleucina-1beta/biossíntese , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais/química , Animais , Anti-Inflamatórios/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Infarto Cerebral/patologia , Avaliação Pré-Clínica de Medicamentos , Glucose/farmacologia , Interleucina-1beta/genética , Masculino , Inibidor de NF-kappaB alfa/metabolismo , Oxigênio/farmacologia , Fitoterapia , Regiões Promotoras Genéticas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Long-Evans , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
13.
Circulation ; 119(8): 1124-34, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19221220

RESUMO

BACKGROUND: Thiazolidinediones have been reported to protect against ischemia-reperfusion injury. Their protective actions are considered to be peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-dependent; however, it is unclear how PPAR-gamma activation confers resistance to ischemia-reperfusion injury. METHODS AND RESULTS: We evaluated the effects of rosiglitazone or PPAR-gamma overexpression on cerebral infarction in a rat model and investigated the antiapoptotic actions in the N2-A neuroblastoma cell model. Rosiglitazone or PPAR-gamma overexpression significantly reduced infarct volume. The protective effect was abrogated by PPAR-gamma small interfering RNA. In mice with knock-in of a PPAR-gamma dominant-negative mutant, infarct volume was enhanced. Proteomic analysis revealed that brain 14-3-3epsilon was highly upregulated in rats treated with rosiglitazone. Upregulation of 14-3-3epsilon was abrogated by PPAR-gamma small interfering RNA or antagonist. Promoter analysis and chromatin immunoprecipitation revealed that rosiglitazone induced PPAR-gamma binding to specific regulatory elements on the 14-3-3epsilon promoter and thereby increased 14-3-3epsilon transcription. 14-3-3epsilon Small interfering RNA abrogated the antiapoptotic actions of rosiglitazone or PPAR-gamma overexpression, whereas 14-3-3epsilon recombinant proteins rescued brain tissues and N2-A cells from ischemia-induced damage and apoptosis. Elevated 14-3-3epsilon enhanced binding of phosphorylated Bad and protected mitochondrial membrane potential. CONCLUSIONS: Ligand-activated PPAR-gamma confers resistance to neuronal apoptosis and cerebral infarction by driving 14-3-3epsilon transcription. 14-3-3epsilon Upregulation enhances sequestration of phosphorylated Bad and thereby suppresses apoptosis.


Assuntos
Proteínas 14-3-3/genética , Apoptose/fisiologia , Isquemia Encefálica/prevenção & controle , Neurônios/metabolismo , PPAR gama/fisiologia , Regulação para Cima/fisiologia , Proteínas 14-3-3/biossíntese , Proteínas 14-3-3/fisiologia , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Infarto Cerebral/prevenção & controle , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/efeitos dos fármacos , Neurônios/patologia , PPAR gama/biossíntese , PPAR gama/genética , Ratos , Rosiglitazona , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Regulação para Cima/efeitos dos fármacos
14.
Mol Pharmacol ; 76(6): 1186-95, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19755521

RESUMO

Urotensin II (U-II) is implicated in cardiomyocyte hypertrophy, which results in cardiac remodeling. We recently demonstrated that both reactive oxygen species (ROS) generation and epidermal growth factor receptor (EGFR) transactivation play critical roles in U-II signal transduction. However, the detailed intracellular mechanism(s) underlying cardiac hypertrophy and remodeling remain unclear. In this study, we used rat cardiomyocytes treated with U-II to investigate the association between ROS generation and EGFR transactivation. U-II treatment was found to stimulate cardiomyocyte hypertrophy through phosphorylation of EGFR and ROS generation. Apocynin, an NAD(P)H oxidase inhibitor, and N-acetyl cysteine (NAC), an ROS scavenger, both inhibited EGFR transactivation induced by U-II. In contrast, 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478, an EGFR inhibitor) failed to inhibit intracellular ROS generation induced by U-II. Src homology 2-containing tyrosine phosphatase (SHP-2), but not protein tyrosine phosphatase 1B (PTP 1B), was shown to be associated with EGFR during U-II treatment by EGFR coimmunoprecipitation. ROS have been reported to transiently oxidize the catalytic cysteine of phosphotyrosine phosphatases, subsequently inhibiting their activity. We examined the effect of U-II on SHP-2 and PTP 1B in cardiomyocytes using a modified malachite green phosphatase assay. SHP-2, but not PTP 1B, was transiently oxidized during U-II treatment, which could be repressed by NAC treatment. In SHP-2 knockdown cells, U-II-induced phosphorylation of EGFR and myocyte hypertrophy were dramatically elevated, and these effects were not influenced by NAC. Our data suggest that U-II-mediated ROS generation can transiently inhibit SHP-2 activity, thereby facilitating EGFR transactivation and hypertrophic signal transduction in rat cardiomyocytes.


Assuntos
Receptores ErbB/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Ativação Transcricional/efeitos dos fármacos , Urotensinas/farmacologia , Animais , Western Blotting , Relação Dose-Resposta a Droga , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Hipertrofia/induzido quimicamente , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Anesthesiology ; 110(1): 74-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19104173

RESUMO

BACKGROUND: Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. METHODS: Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. RESULTS: The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. CONCLUSIONS: The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotelina-1/biossíntese , Propofol/farmacologia , Veias Umbilicais/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Endotelina-1/antagonistas & inibidores , Endotelina-1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Mecânico , Veias Umbilicais/citologia , Veias Umbilicais/fisiologia
16.
Clin Exp Pharmacol Physiol ; 36(7): 711-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19207719

RESUMO

1. Accumulating evidence suggests that oxidative stress plays a key role in the development of cardiac fibrosis. Urotensin-II (U-II) has been reported to play an important role in cardiac remodelling and fibrosis. Recently, we demonstrated the involvement of reactive oxygen species (ROS) production in U-II-induced cardiac fibroblast proliferation. Magnolol is an anti-oxidant compound extracted from the cortices of Magnolia officinalis. Thus, it is feasible that magnolol may attenuate cardiac fibroblast proliferation by inhibiting ROS production. Therefore, the aims of the present study were to determine whether magnolol alters U-II-induced cell proliferation and to identify the putative underlying signalling pathways in rat cardiac fibroblasts. 2. Cultured rat cardiac fibroblasts were pretreated with magnolol (1, 3 and 10 micromol/L) for 30 min, followed by exposure to U-II (30 nmol/L) for 24 h, after which cell proliferation and endothelin-1 (ET-1) protein secretion was examined. The effects of magnolol on U-II-induced ROS formation and extracellular signal-regulated kinase (ERK) phosphorylation were examined to elucidate the intracellular mechanisms by which magnolol affects cell proliferation and ET-1 expression. 3. Urotensin-II (30 nmol/L) stimulated cell proliferation, ET-1 protein secretion and ERK phosphorylation, all of which were inhibited by magnolol (10 micromol/L). Pretreatment of cardiac fibroblasts with N-acetylcysteine (5 mmol/L) for 30 min prior to exposure to U-II resulted in inhibition of U-II increased ROS formation. Similar effects were observed with 10 micromol/L magnolol. 4. In conclusion, the results suggest that magnolol inhibits cardiac fibroblast proliferation by interfering with ROS generation. Thus, the present study provides important new insights into the molecular pathways involved, which may contribute to our understanding of the effects of magnolol on the cardiovascular system.


Assuntos
Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Lignanas/farmacologia , Miocárdio/citologia , Urotensinas/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Fibroblastos/fisiologia , Inibidores do Crescimento/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Urotensinas/antagonistas & inibidores
17.
Clin Exp Pharmacol Physiol ; 36(5-6): 559-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19673940

RESUMO

1. Mechanical stretch leads to cardiac hypertrophy and may ultimately cause heart failure. However, the effect of mechanical stretch on gene induction in cardiomyocytes remains to be determined. 2. In the present study, we compared transcript profiles of mechanically stretched neonatal rat cardiomyocytes with those of unstretched cells using cDNA microarrays. The microarrays contained probes for 480 known genes, including those involved in signal transduction, cell cycle regulation, the cytoskeleton and cell motility. Eighteen genes, including the eNOS gene, were identified as having significantly differential expression in response to mechanical stretch in cardiomyocytes. 3. Northern and western blot analysis further quantified the expression of the eNOS gene. Mechanical stretch increased constitutive NOS activity and nitric oxide (NO) production. The NO donor s-nitroso-N-acetylpenicillamine (SNAP) inhibited mechanical stretch-stimulated protein synthesis, as measured by [3H]-leucine uptake. In addition, cardiomyocytes were infected with adenoviral vectors encoding cDNA for eNOS (Ad-eNOS) and a phosphoglycerate kinase (PGK) empty vector (Ad-PGK). In contrast with Ad-PGK-infected cells, in cardiomyocytes infected with Ad-eNOS, there was increased calcium-dependent NOS activity and nitrite production. Cardiomyocytes infected with Ad-eNOS exhibited diminished mechanical stretch-stimulated protein synthesis. In contrast, in eNOS-knockdown cells, the increased eNOS protein levels and NOS activity induced by mechanical stretch were abolished, but protein synthesis was enhanced. 4. The results of the present study indicate that eNOS gene expression is induced by mechanical stretch, leading to increased constitutive NOS activity and NO production, which may be a negative regulator in cardiomyocyte hypertrophy.


Assuntos
Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Estresse Mecânico , Animais , Animais Recém-Nascidos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipertrofia/genética , Tono Muscular/efeitos dos fármacos , Tono Muscular/genética , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Interferente Pequeno/farmacologia , Ratos , Transfecção
18.
Am J Chin Med ; 47(2): 337-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30871360

RESUMO

Through population-based studies, associations have been found between coffee drinking and numerous health benefits, including a reduced risk of cardiovascular disease. Active ingredients in coffee have therefore received considerable attention from researchers. A wide variety of effects have been attributed to cafestol, one of the major compounds in coffee beans. Because cardiac hypertrophy is an independent risk factor for cardiovascular events, this study examined whether cafestol inhibits urotensin II (U-II)-induced cardiomyocyte hypertrophy. Neonatal rat cardiomyocytes were exposed only to U-II (1 nM) or to U-II (1 nM) following 12-h pretreatment with cafestol (1-10 µ M). Cafestol (3-10 µ M) pretreatment significantly inhibited U-II-induced cardiomyocyte hypertrophy with an accompanying decrease in U-II-induced reactive oxygen species (ROS) production. Cafestol also inhibited U-II-induced phosphorylation of redox-sensitive extracellular signal-regulated kinase (ERK) and epidermal growth factor receptor transactivation. In addition, cafestol pretreatment increased Src homology region 2 domains-containing phosphatase-2 (SHP-2) activity, suggesting that cafestol prevents ROS-induced SHP-2 inactivation. Moreover, nuclear factor erythroid-2-related factor 2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression were enhanced by cafestol. Addition of brusatol (a specific inhibitor of Nrf2) or Nrf2 siRNA significantly attenuated cafestol-mediated inhibitory effects on U-II-stimulated ROS production and cardiomyocyte hypertrophy. In summary, our data indicate that cafestol prevented U-II-induced cardiomycyte hypertrophy through Nrf2/HO-1 activation and inhibition of redox signaling, resulting in cardioprotective effects. These novel findings suggest that cafestol could be applied in pharmacological therapy for cardiac diseases.


Assuntos
Crescimento Celular/efeitos dos fármacos , Diterpenos/farmacologia , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Urotensinas/efeitos adversos , Urotensinas/antagonistas & inibidores , Animais , Cardiomegalia/tratamento farmacológico , Células Cultivadas , Depressão Química , Diterpenos/uso terapêutico , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase-1/metabolismo , Fosforilação/efeitos dos fármacos , Fitoterapia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional/efeitos dos fármacos
20.
Apoptosis ; 13(7): 883-94, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18483861

RESUMO

The objective of this study was to evaluate the cardiac toxicity induced by carboplatin, a second generation platinum-containing anti-cancer drug, and to test whether pravastatin can reduce this cardio-toxicity. In the present study, infusion of carboplatin (100 mg/kg) to mice resulted in decreased survival rates and abnormal cardiac histology, concomitant with increased cardiac apoptosis. In addition, treatment of cultured rat cardiomyocytes with carboplatin (100 muM for 48 h) caused marked apoptosis and increased caspase-3, -9, and cytochrome C, but decreased BCL-XL protein expression, and this was inhibited by reactive oxygen species (ROS) scavenger n-acetylcysteine. Furthermore, pretreatment of cardiomyocytes with pravastatin (20 microM) before carboplatin exposure significantly attenuated apoptosis and decreased caspase-3, -9, cytochrome C activity. Lastly, mice pre-treated with pravastatin before carboplatin treatment showed improved survival rate and cardiac function, with reduced cardiomyocyte apoptosis via activating Akt and restoring normal mitochondrial HAX-1 in heart tissue. In summary, our results show that carboplatin can induce cardiotoxicity in vivo and in cultured cells via a mitochondrial pathway related to ROS production, whereas pravastatin administration can reduce such oxidative stress thus prevented cardiac apoptosis. Therefore, pravastatin can be used as a cytoprotective agent prior to carboplatin chemotherapy.


Assuntos
Antineoplásicos/antagonistas & inibidores , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Carboplatina/antagonistas & inibidores , Carboplatina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Pravastatina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Apoptose/fisiologia , Carboplatina/administração & dosagem , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular , Leucopenia/induzido quimicamente , Leucopenia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pravastatina/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA