Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776372

RESUMO

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Assuntos
Imageamento por Ressonância Magnética , Saimiri , Medula Espinal , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Feminino
2.
Mol Psychiatry ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215183

RESUMO

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

3.
Neuroimage ; 289: 120549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382864

RESUMO

The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.


Assuntos
Córtex Insular , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico , Dor
4.
Magn Reson Med ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370926

RESUMO

PURPOSE: Previous studies have shown varied BOLD signals with gradient echo (GE) across cortical depth. To interpret these variations, and understand the effects of vascular geometry and size, the magnitudes and layer distributions of GE and spin-echo (SE) BOLD functional MRI signals were compared in the somatosensory cortex of squirrel monkeys during tactile stimulation and in a resting state at high spatial resolution and high field. METHODS: A block-design stimulation was used to identify tactile-evoked activation signals in somatosensory Areas 3b and 1. Layer-specific connectivities were calculated using resting-state data. Signal power spectra were compared by depth and pulse sequence. The measured ratios of transverse relaxation rate changes were compared with Anderson and Weiss's model. RESULTS: SE signals showed a 26% lower percentage signal change during tactile stimulation compared with GE, along with a slower time course. SE signals remained consistent but weaker in lower layers, whereas GE signals decreased with cortical depth. This pattern extended to resting-state power spectra. Resting-state functional connectivity indicated larger connectivity between the top layers of Area 3b and Area 1 for GE, with minimal changes for SE. Comparisons with theory suggest vessel diameters ranging from 19.4 to 9 microns are responsible for BOLD effects across cortical layers at 9.4 T. CONCLUSION: These results provide further evidence that at high field, SE BOLD signals are relatively free of contributions from sources other than microvascular changes in response to neural activity, whereas GE signals, even in the superficial layers, are not dominated by very large vessels.

5.
J Neurosci ; 42(50): 9330-9342, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379707

RESUMO

Cortical reactivation and regain of interareal functional connections have been linked to the recovery of hand grasping behavior after loss of sensory inputs in primates. We investigated contributions of neurons in two hierarchically organized somatosensory areas, 3b and S2, by characterizing local field potential (LFP) and multiunit spiking activity in five states (rest, stimulus-on, sustained, stimulus-off, and induced) and interareal communication after grasping behavior of dorsal column lesioned male squirrel monkeys had mostly recovered. Compared with normal cortex, fMRI, LFP, and spiking response magnitudes to step indentations were significantly weaker. The sustained component of the spiking recovered much better than the stimulus-off response. Correlation between overall spiking and γ LFP remained strong within each recovered areas 3b and S2. The interareal correlations of γ LFP were severely disrupted, except in the resting and stimulus-on periods. Interareal correlation of spiking was disrupted in the stimulus-off period only. In summary, submodality of low threshold mechanoreceptive neurons recovered differentially in input-deprived area 3b and S2 when impaired global hand grasping behavior returned. Slow-adapting-like neurons recovered, whereas rapid-adapting-like neurons did not. Interareal communications were also severely compromised. We propose that slow-adapting-like neurons and afferents in recovered area 3b and S2 mediate recovery of impaired grasping behavior after dorsal column tract lesion.SIGNIFICANCE STATEMENT Sensory feedback is essential for execution of hand grasping behavior in primates. Reactivations of somatosensory cortices have been attributed to recovery of such behavior after loss of sensory inputs via largely unknown mechanisms. In input-deprived area 3b and S2 cortex, after hand grasping behavior mostly recovered, we found slow-adapting-like neurons were greatly recovered, whereas rapid-adapting-like neurons did not. Communications between area 3b and S2 neurons were severely compromised. We suggest that recovery of slow-adapting-like neurons in input-deprived area 3b and S2 may mediate the recovery of hand grasping behavior.


Assuntos
Córtex Somatossensorial , Traumatismos da Medula Espinal , Animais , Masculino , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Saimiri , Comunicação
6.
Magn Reson Med ; 89(2): 729-737, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161670

RESUMO

PURPOSE: To calculate temperatures from T2 *-weighted images collected during optogenetic fMRI based on proton resonance frequency (PRF) shift thermometry, to monitor confounding heating effects and determine appropriate light parameters for optogenetic stimulation. METHODS: fMRI is mainly based on long-TE gradient-recalled echo acquisitions that are also suitable for measuring small temperature changes via the PRF shift. A motion- and respiration-robust processing pipeline was developed to calculate temperature changes based on the PRF shift directly from the T2 *-weighted images collected for fMRI with a two-shot 2D gradient-recalled echo-EPI sequence at 9.4T. Optogenetic fMRI protocols which differed in stimulation durations (3, 6 and 9 s) within a total block duration of 30 s were applied in a squirrel monkey to validate the methods with blue and green light (20 Hz, 30 mW) delivery interleaved between periods. General linear modeling was performed on the resulting time series temperature maps to verify if light delivery with each protocol resulted in significant heating in the brain around the optical fiber. RESULTS: The temperature SD was 0.05°C with the proposed imaging protocol and processing. Statistical analysis showed that the optogenetic stimulation protocol with a 3 s stimulation duration did not result in significant temperature rises. Significant temperature rises up to 0.13°C (p < 0. 05) were observed with 6 and 9 s stimulation durations for blue and green light. CONCLUSION: The proposed processing pipeline can be useful for the design of optogenetic stimulation protocols and for monitoring confounding heating effects.


Assuntos
Imageamento por Ressonância Magnética , Optogenética , Imageamento por Ressonância Magnética/métodos , Calefação , Encéfalo/diagnóstico por imagem , Prótons , Lasers , Imagens de Fantasmas
7.
Plant Dis ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129350

RESUMO

Zizania latifolia is perennial plant, belonging to the rice tribe (Oryzeae) of the grass family Poaceae (Xu et al. 2020), which is also called jiaobai in China and commonly consumed as a vegetable crop. In 2022, a sheath rot occurred on Z. latifolia plants in Lishui, the Zhejiang Province of China. Symptoms occurred on the leaf sheath and initially showed as water-soaked chlorotic spots, later enlarging to irregular, elliptic, and elongated dark brown necrotic lesions. Later, lesions fused and extended to most of the leaf sheath leading to wilting. Almost 60% of the surveyed Z. latifolia plants in 100 hectare were affected. Diseased samples were collected for pathogen isolation. Symptomatic tissues were taken from the edge of lesions, sterilized for 10 s in 70% ethanol, then 2 min in 1% NaClO, washed three times with sterile distilled water, and placed on potato dextrose agar (PDA) at 26 °C in the dark. Fungal colonies displaying similar morphology were picked and purified by single spore isolation. In total, 8 isolates were obtained from 8 plant samples. When cultured on PDA, fungal colonies were white, gradually turning pale yellow with time. Macroconidia only were produced on Carnation leaf agar (CLA) and were hyaline, slender, falcate with single foot cells, 3 to 5 septate, and measured 29 to 50 µm × 3.75 to 5.0 µm. Chlamydospores were globose to subglobose and measured 6.8 to 16.5 µm. These morphological features were consistent with the description of Fusarium asiaticum (Leslie and Summerell 2006). For molecular identification, the partial translation elongation factor 1 alpha (TEF1-α) gene and RNA polymerase II second largest subunit (RPB2) gene of three representative isolates were amplified and sequenced (O'Donnell et al. 1998). These sequences were identical to each other, and one representative, Z-3-1, was deposited in GenBank (Accession No. OQ129437 and OQ858619, respectively). Analysis of the TEF1-α and RPB2 sequences of Z-3-1 showed that they were 99.85% (688/689) and 100% (945/945) identical to F. asiaticum strain Daya350-3 (KT380124) and MRC 1976 (MH582121), respectively, in NCBI, and had 99.38% and 100% identity to F. asiaticum strain CBS 110257 (AF212451 and JX171573) in Fusarium-ID. A combined phylogenetic tree based on the TEF1-α and RPB2 sequences showed that Z-3-1 was clustered with F. asiaticum using the neighbor-joining algorithm. Pathogenicity testing was conducted by inoculating potted Z. latifolia plants with a 1×105 conidial suspension of isolate Z-3-1, which was prepared by culturing the fungal strain in PDB at 26°C for 4 days in a shaker incubator. Conidial suspensions (1 mL) were dropped onto sheaths of potted Z. latifolia plants with sterile water serving as controls. All inoculated plants were covered with plastic bags and maintained in a humid growth chamber at 26°C with a photoperiod of 16 h. The inoculation experiment was repeated twice with 5 replicates per test. Four days later, the sheaths of potted inoculated plants displayed symptoms similar to those observed in the field. No symptoms were observed on control plants. Fusarium asiaticum was re-isolated specifically from the symptomatic inoculated Z. latifolia plants and confirmed by morphological and molecular methods, thus fulfilling Koch's postulates. Fusarium asiaticum has been reported to be a pathogen of other plants in China, such as Ligusticum (Zhu et al. 2022) and Setaria italica (Kong et al. 2022). To our knowledge, this is the first report of F. asiaticum causing sheath rot of Z. latifolia in China. The identification of the pathogen is the first step in developing appropriate field management strategies for this new disease.

8.
Neuroimage ; 257: 119244, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533827

RESUMO

Pain perception involves multiple brain regions and networks. Understanding how these brain networks work together is fundamental for appreciating network-wise changes reported in patients with chronic pain disorders. Parcellating pain related networks and understanding their causal relationships is the first step to understand how painful information is processed, integrated, and modulated, and it requires direct manipulation of specific brain regions. Nonhuman primates (NHP) offer an ideal model system to achieve these goals because cortical and subcortical regions in the NHP brain are established based on a variety of different types of data collected in a way that is not feasible or, at least, extremely difficult in humans (i.e., histology data, tract-tracing, intracerebral recordings). In addition, different methodological techniques can also help characterize and further understand these brain cortical and subcortical regions over the course of development. Here we used a heat nociceptive stimulation that is proven to elicit activity of nociceptive neurons in the cortex to refine and parcellate the whole brain nociceptive functional networks, to identify key network hubs, and to characterize network-wise temporal dynamic signatures using high-resolution fMRI. We first functionally localized 24 cortical and subcortical regions that responded to heat nociceptive stimuli (somatosensory area 1/2, area 3a/3b, S2, posterior insula (pIns), anterior insula, area 7b, posterior parietal cortex, anterior cingulate cortex (ACC), prefrontal cortex, caudate, and mediodorsal (MD) and ventral posterior lateral (VPL) thalamic nuclei) and used them as seeds in resting state fMRI (rsfMRI) data analysis. We applied both hierarchical clustering and graph-theory analyses of the pairwise rsfMRI correlation metrics and identified five cortical and one subcortical sub-networks: strong resting state functional connectivity (rsFC) between ACC and prefrontal regions, parietal cortex and area 7b, S2 and posterior insula, areas 3a/3b and 1/2 within the S1 cortex, and thalamic MD and caudate nuclei. The rsFC strengths between cortical areas within each subnetwork were significantly stronger than those between subcortical regions. Regions within each sub-network also exhibited highly correlated temporal dynamics at rest, but the overall dynamic patterns varied drastically across sub-networks. Graph-theory analysis identified the MD nucleus as a hub that connects subcortical and cortical nociceptive sub-networks. The S2-pIns connection joins the sensory and affective/cognitive sub-networks.


Assuntos
Mapeamento Encefálico , Nociceptividade , Animais , Mapeamento Encefálico/métodos , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Dor , Primatas
9.
BMC Cancer ; 22(1): 45, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996395

RESUMO

BACKGROUND: Adult sporadic Burkitt lymphoma (BL) is a rare but highly aggressive subtype of lymphoma which lacks its own unique prognostic model. Systemic inflammatory biomarkers have been confirmed as prognostic markers in several types of malignancy. Our objective was to explore the predictive value of pretreatment inflammatory biomarkers and establish a novel, clinically applicable prognostic index for adult patients with sporadic BL. METHODS: We surveyed retrospectively 336 adult patients with newly diagnosed sporadic BL at 8 Chinese medical centers and divided into training cohort (n = 229) and validation cohort (n = 107). The pretreatment inflammatory biomarkers were calculated for optimal cut-off value. The association between serum biomarkers and overall survival (OS) was analyzed by Kaplan-Meier curves and Cox proportional models. The risk stratification was defined based on normal LDH level, Ann Arbor stage of I and completely resected abdominal lesion or single extra-abdominal mass < 10 cm. RESULTS AND CONCLUSIONS: Univariate and multivariate analyses revealed that platelets< 254 × 109/L, albumin< 40 g/L, lactate dehydrogenase≥334 U/L independently predicted unfavorable OS. We used these data as the basis for the prognostic index, in which patients were stratified into Group 1 (no or one risk factor), Group 2 (two risk factors), or Group 3 (three risk factors), which were associated with 5-year OS rates of 88.1, 72.4, and 45%, respectively. In the subgroup analysis for high-risk patients, our prognostic model results showed that high-risk patients with no more than one adverse factor presented a 5-year survival rate of 85.9%, but patients with three adverse factors had a 5-year survival rate of 43.0%. Harrell's concordance index (C-index) of the risk group score was 0.768. Therefore, the new prognostic model could be used to develop risk-adapted treatment approaches for adult sporadic BL.


Assuntos
Biomarcadores Tumorais/sangue , Linfoma de Burkitt , Adulto , Idoso , Linfoma de Burkitt/sangue , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
10.
Liver Int ; 42(3): 682-695, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743403

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the leading causes of tumour-related death. Here, we investigated the molecular mechanism of HCC by studying the function of circ_GLIS2. METHODS: Human HCC specimens and cell lines were used. Sanger sequencing, actinomycin D and RNase R treatment were performed to validate circular RNA features of circ_GLIS2. qRT-PCR, western blotting, immunostaining, and IHC were employed to examine levels of circ_GLIS2, GLIS2 mRNA, and EMT-related markers. CCK-8, colony formation, flow cytometry, wound healing assay, and transwell assays were performed to evaluate cancer cell proliferation, apoptosis, migration, and invasion. RIP and RNA pull-down assay were used to validate EIF4A3/GLIS2 mRNA interaction. MSP was performed to measure the methylation status of GLIS2 promoter. Nude mouse xenograft model was used to examine tumour growth and metastasis in vivo. RESULTS: Circ_GLIS2 and linear GLIS2 mRNA were reduced in human HCC tissues and cells. Their low levels correlated with a poor survival rate of HCC patients. Overexpression of circ_GLIS2 and GLIS2 suppressed HCC cell proliferation, migration, and invasion but promoted cell apoptosis. GLIS2 promoter region was hypermethylated in HCC cells. EIF4A3 was directly bound with GLIS2 mRNA and promoted circ_GLIS2/GLIS2 expression. Moreover, overexpression of circ_GLIS2 restrained HCC tumour growth and metastasis in vivo. CONCLUSION: Circ_GLIS2 suppresses HCC growth and metastasis by inhibiting cell proliferation, migration, and invasion, but promoting cell apoptosis. These findings provide molecular insights into the mechanism of HCC and indicate that circ_GLIS2 could serve as a diagnosis marker or therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/metabolismo , RNA Circular/genética
11.
Genomics ; 113(4): 2108-2121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964421

RESUMO

Tomato is more prone to Tuta absoluta invasion and damages as compared to other host plants but the mechanism behind this preference has not been elucidated. Here, two contrasting host preference plants, tomato and eggplant, were used to investigate biochemical and transcriptomic modifications induced by T. absoluta infestation. Biochemical analysis at 0-72 h post T. absoluta infestation revealed significantly reduced concentrations of amino acid, fructose, sucrose, jasmonic acid, salicylic acid, and total phenols in tomato compared to eggplant, mainly at 48 h post T. absoluta infestation. Transcriptome analysis showed higher transcript changes in infested eggplant than tomato. Signaling genes had significant contributions to mediate plant immunity against T. absoluta, specifically genes associated with salicylic acid in eggplant. Genes from PR1b1, NPR1, NPR3, MAPKs, and ANP1 families play important roles to mitigate T. absoluta infestation. Our results will facilitate the development of control strategies against T. absoluta for sustainable tomato production.


Assuntos
Mariposas , Solanum lycopersicum , Solanum melongena , Animais , Perfilação da Expressão Gênica , Humanos , Solanum lycopersicum/genética , Mariposas/fisiologia , Solanum melongena/genética , Transcriptoma
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(1): 1-6, 2022 Jan.
Artigo em Zh | MEDLINE | ID: mdl-35048592

RESUMO

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic since its outbreak in 2019, presenting serious threats to public health and the health of the people. As one of the main components of the host innate immune system, type-Ⅰ interferon (IFN) plays a critical role in the defense against viral infections. The battle between the virus and the host innate immune system determines the disease progression. It has been reported that SARS-CoV-2 inhibits IFN production and suppresses the activation of IFN signaling pathway through its interactions with the host innate immune system. Then, the weakened or delayed response of type-Ⅰ interferon causes the disturbance of host immune responses, which is one of the important reasons why SARS-CoV-2 causes such high morbidity and mortality. Herein, we reviewed and discussed the interaction between SARS-CoV-2 viral proteins and the host innate immune system, especially the interaction with type-Ⅰ IFN pathway, to provide new insights into the mechanisms of viral evasion of host immune response and new perspectives and strategies for treating COVID-19 with IFN.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Imunidade Inata , Pandemias , SARS-CoV-2
13.
Neuroimage ; 240: 118391, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271158

RESUMO

Spontaneous fluctuations of Blood Oxygenation-Level Dependent (BOLD) MRI signal in a resting state have previously been detected and analyzed to describe intrinsic functional networks in the spinal cord of rodents, non-human primates and human subjects. In this study we combined high resolution imaging at high field with data-driven Independent Component Analysis (ICA) to i) delineate fine-scale functional networks within and between segments of the cervical spinal cord of monkeys, and also to ii) characterize the longitudinal effects of a unilateral dorsal column injury on these networks. Seven distinct functional hubs were revealed within each spinal segment, with new hubs detected at bilateral intermediate and gray commissure regions in addition to the bilateral dorsal and ventral horns previously reported. Pair-wise correlations revealed significantly stronger connections between hubs on the dominant hand side. Unilateral dorsal-column injuries disrupted predominantly inter-segmental rather than intra-segmental functional connectivities as revealed by correlation strengths and graph-theory based community structures. The effects of injury on inter-segmental connectivity were evident along the length of the cord both below and above the lesion region. Connectivity strengths recovered over time and there was revival of inter-segmental communities as animals recovered function. BOLD signals of frequency 0.01-0.033 Hz were found to be most affected by injury. The results in this study provide new insights into the intrinsic functional architecture of spinal cord and underscore the potential of functional connectivity measures to characterize changes in networks after an injury and during recovery.


Assuntos
Conectoma , Traumatismos da Medula Espinal/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Animais
14.
Neuroimage ; 236: 118026, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930537

RESUMO

In a series of previous studies, we demonstrated that damage to the dorsal column in the cervical spinal cord deactivates the contralateral somatosensory hand cortex and impairs hand use in a reach-to-grasp task in squirrel monkeys. Nevertheless, considerable cortical reactivation and behavioral recovery occurs over the following weeks to months after lesion. This timeframe may also be a window for targeted therapies to promote cortical reactivation and functional reorganization, aiding in the recovery process. Here we asked if and how task specific training of an impaired hand would improve behavioral recovery and cortical reorganization in predictable ways, and if recovery related cortical changes would be detectable using noninvasive functional magnetic resonance imaging (fMRI). We further asked if invasive neurophysiological mapping reflected fMRI results. A reach-to-grasp task was used to test impairment and recovery of hand use before and after dorsal column lesions (DC-lesion). The activation and organization of the affected primary somatosensory cortex (area 3b) was evaluated with two types of fMRI - either blood oxygenation level dependent (BOLD) or cerebral blood volume (CBV) with a contrast agent of monocrystalline iron oxide nanocolloid (MION) - before and after DC-lesion. At the end of the behavioral and fMRI studies, microelectrode recordings in the somatosensory areas 3a, 3b and 1 were used to characterize neuronal responses and verify the somatotopy of cortical reactivations. Our results indicate that even after nearly complete DC lesions, monkeys had both considerable post-lesion behavioral recovery, as well as cortical reactivation assessed with fMRI followed by extracellular recordings. Generalized linear regression analyses indicate that lesion extent is correlated with the behavioral outcome, as well as with the difference in the percent signal change from pre-lesion peak activation in fMRI. Monkeys showed behavioral recovery and nearly complete cortical reactivation by 9-12 weeks post-lesion (particularly when the DC-lesion was incomplete). Importantly, the specific training group revealed trends for earlier behavioral recovery and had higher magnitude of fMRI responses to digit stimulation by 5-8 weeks post-lesion. Specific kinematic measures of hand movements in the selected retrieval task predicted recovery time and related to lesion characteristics better than overall task performance success. For measures of cortical reactivation, we found that CBV scans provided stronger signals to vibrotactile digit stimulation as compared to BOLD scans, and thereby may be the preferred non-invasive way to study the cortical reactivation process after sensory deprivations from digits. When the reactivation of cortex for each of the digits was considered, the reactivation by digit 2 stimulation as measured with microelectrode maps and fMRI maps was best correlated with overall behavioral recovery.


Assuntos
Medula Cervical/lesões , Dedos/fisiopatologia , Bulbo/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Córtex Somatossensorial/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Microeletrodos , Reabilitação Neurológica , Estimulação Física , Saimiri , Córtex Somatossensorial/diagnóstico por imagem
15.
Eur J Clin Microbiol Infect Dis ; 40(2): 413-417, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32865669

RESUMO

The prevalence and outcomes of patients who had re-activation of coronavirus disease 2019 (COVID-19) after discharge remain poorly understood. We included 126 consecutively confirmed cases of COVID-19 with 2-month follow-up data after discharge in this retrospective study. The upper respiratory specimen using a reverse-transcription polymerase chain reaction test of three patients (71 years [60-76]) were positive within 11-20 days after their discharge, with an event rate of 19.8 (95%CI 2.60-42.1) per 1,000,000 patient-days. Moreover, all re-positive patients were asymptomatic. Our findings suggest that few recovered patients may still be virus carriers even after reaching the discharge criteria.


Assuntos
COVID-19/virologia , RNA Viral/análise , SARS-CoV-2/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Prevalência , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação
16.
BMC Infect Dis ; 21(1): 1271, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930161

RESUMO

BACKGROUND: The long-term functional outcome of discharged patients with coronavirus disease 2019 (COVID-19) remains unresolved. We aimed to describe a 6-month follow-up of functional status of COVID-19 survivors. METHODS: We reviewed the data of COVID-19 patients who had been consecutively admitted to the Tumor Center of Union Hospital (Wuhan, China) between 15 February and 14 March 2020. We quantified a 6-month functional outcome reflecting symptoms and disability in COVID-19 survivors using a post-COVID-19 functional status scale ranging from 0 to 4 (PCFS). We examined the risk factors for the incomplete functional status defined as a PCFS > 0 at a 6-month follow-up after discharge. RESULTS: We included a total of 95 COVID-19 survivors with a median age of 62 (IQR 53-69) who had a complete functional status (PCFS grade 0) at baseline in this retrospective observational study. At 6-month follow-up, 67 (70.5%) patients had a complete functional outcome (grade 0), 9 (9.5%) had a negligible limited function (grade 1), 12 (12.6%) had a mild limited function (grade 2), 7 (7.4%) had moderate limited function (grade 3). Univariable logistic regression analysis showed a significant association between the onset symptoms of muscle or joint pain and an increased risk of incomplete function (unadjusted OR 4.06, 95% CI 1.33-12.37). This association remained after adjustment for age and admission delay (adjusted OR 3.39, 95% CI 1.06-10.81, p = 0.039). CONCLUSIONS: A small proportion of discharged COVID-19 patients may have an incomplete functional outcome at a 6-month follow-up; intervention strategies are required.


Assuntos
COVID-19 , Alta do Paciente , Seguimentos , Estado Funcional , Humanos , SARS-CoV-2
17.
NMR Biomed ; 33(4): e4216, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943383

RESUMO

Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.


Assuntos
Comportamento Animal , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Animais , Anisotropia , Masculino , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Medula Espinal/patologia , Medula Espinal/fisiopatologia
18.
Proc Natl Acad Sci U S A ; 114(20): 5253-5258, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461461

RESUMO

Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/diagnóstico por imagem , Animais , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Neurônios , Acoplamento Neurovascular/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Saimiri/fisiologia
19.
J Neurosci ; 38(7): 1774-1787, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29335352

RESUMO

This study addresses one long-standing question of whether functional separations are preserved for somatosensory modalities of touch, heat, and cold nociception within primate primary somatosensory (S1) cortex. This information is critical for understanding how the nature of pain is represented in the primate brain. Using a combination of submillimeter-resolution fMRI and microelectrode local field potential (LFP) and spike recordings, we identified spatially segregated cortical zones for processing touch and nociceptive heat and cold stimuli in somatotopically appropriate areas 3a, 3b, 1, and 2 of S1 in male monkeys. The distances between zones were comparable (∼3.4 mm) across stimulus modalities (heat, cold, and tactile), indicating the existence of uniform, modality-specific modules. Stimulus-evoked LFP maps validated the fMRI maps in areas 3b and 1. Isolation of heat and cold nociceptive neurons from the fMRI zones confirmed the validity of using fMRI to probe nociceptive regions and circuits. Resting-state fMRI analysis revealed distinct intrinsic functional circuits among functionally related zones. We discovered distinct modular structures and networks for thermal nociception within S1 cortex, a finding that has significant implications for studying chronic pain syndromes and guiding the selection of neuromodulation targets for chronic pain management.SIGNIFICANCE STATEMENT Primate S1 subregions contain discrete heat and cold nociceptive modules. Modules with the same properties exhibit strong functional connection. Nociceptive fMRI response coincides with LFP and spike activities of nociceptive neurons. Functional separation of heat and cold pain is retained within primate S1 cortex.


Assuntos
Rede Nervosa/fisiopatologia , Nociceptividade , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Mapeamento Encefálico , Temperatura Baixa , Temperatura Alta , Imageamento por Ressonância Magnética , Masculino , Estimulação Física , Saimiri , Células Receptoras Sensoriais , Tato , Vibração
20.
Neuroimage ; 184: 45-55, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205207

RESUMO

Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.


Assuntos
Encéfalo/fisiologia , Substância Branca/fisiologia , Animais , Mapeamento Encefálico , Imagem de Tensor de Difusão , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Saimiri
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA