Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675502

RESUMO

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Neoplasias/genética , Proteogenômica , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Intervalo Livre de Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Fosforilação Oxidativa , Fosforilação/genética , Transdução de Sinais/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Sequenciamento do Exoma
3.
Am J Hum Genet ; 111(4): 636-653, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38490207

RESUMO

Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.


Assuntos
Fumar Cigarros , Metilação de DNA , Masculino , Feminino , Humanos , Metilação de DNA/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Fumar/efeitos adversos , Fumar/genética , Expressão Gênica
4.
Genet Epidemiol ; 45(4): 353-371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33834509

RESUMO

By treating genetic variants as instrumental variables (IVs), two-sample Mendelian randomization (MR) methods detect genetically regulated risk exposures for complex diseases using only summary statistics. When considering gene expression as exposure in transcriptome-wide MR (TWMR) analyses, the eQTLs (expression-quantitative-trait-loci) may have pleiotropic effects or be correlated with variants that have effects on disease not via expression, and the presence of those invalid IVs would lead to biased inference. Moreover, the number of eQTLs as IVs for a gene is generally limited, making the detection of invalid IVs challenging. We propose a method, "MR-MtRobin," for accurate TWMR inference in the presence of invalid IVs. By leveraging multi-tissue eQTL data in a mixed model, the proposed method makes identifiable the IV-specific random effects due to pleiotropy from estimation errors of eQTL summary statistics, and can provide accurate inference on the dependence (fixed effects) between eQTL and GWAS (genome-wide association study) effects in the presence of invalid IVs. Moreover, our method can improve power and precision in inference by selecting cross-tissue eQTLs as IVs that have improved consistency of effects across eQTL and GWAS data. We applied MR-MtRobin to detect genes associated with schizophrenia risk by integrating summary-level data from the Psychiatric Genomics Consortium and the Genotype-Tissue Expression project (V8).


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Análise da Randomização Mendeliana , Modelos Genéticos , Locos de Características Quantitativas
5.
Bioinformatics ; 37(17): 2513-2520, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647928

RESUMO

MOTIVATION: Trans-acting expression quantitative trait loci (eQTLs) collectively explain a substantial proportion of expression variation, yet are challenging to detect and replicate since their effects are often individually weak. A large proportion of genetic effects on distal genes are mediated through cis-gene expression. Cis-association (between SNP and cis-gene) and gene-gene correlation conditional on SNP genotype could establish trans-association (between SNP and trans-gene). Both cis-association and gene-gene conditional correlation have effects shared across relevant tissues and conditions, and trans-associations mediated by cis-gene expression also have effects shared across relevant conditions. RESULTS: We proposed a Cross-Condition Mediation analysis method (CCmed) for detecting cis-mediated trans-associations with replicable effects in relevant conditions/studies. CCmed integrates cis-association and gene-gene conditional correlation statistics from multiple tissues/studies. Motivated by the bimodal effect-sharing patterns of eQTLs, we proposed two variations of CCmed, CCmedmost and CCmedspec for detecting cross-tissue and tissue-specific trans-associations, respectively. We analyzed data of 13 brain tissues from the Genotype-Tissue Expression (GTEx) project, and identified trios with cis-mediated trans-associations across brain tissues, many of which showed evidence of trans-association in two replication studies. We also identified trans-genes associated with schizophrenia loci in at least two brain tissues. AVAILABILITY AND IMPLEMENTATION: CCmed software is available at http://github.com/kjgleason/CCmed. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

6.
Mol Cell Proteomics ; 18(8 suppl 1): S66-S81, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31281117

RESUMO

Recent development in high throughput proteomics and genomics profiling enable one to study regulations of genome alterations on protein activities in a systematic manner. In this article, we propose a new statistical method, ProMAP, to systematically characterize the regulatory relationships between proteins and DNA copy number alterations (CNA) in breast and ovarian tumors based on proteogenomic data from the CPTAC-TCGA studies. Because of the dynamic nature of mass spectrometry instruments, proteomics data from labeled mass spectrometry experiments usually have non-ignorable batch effects. Moreover, mass spectrometry based proteomic data often possesses high percentages of missing values and non-ignorable missing-data patterns. Thus, we use a linear mixed effects model to account for the batch structure and explicitly incorporate the abundance-dependent-missing-data mechanism of proteomic data in ProMAP. In addition, we employ a multivariate regression framework to characterize the multiple-to-multiple regulatory relationships between CNA and proteins. Further, we use proper statistical regularization to facilitate the detection of master genetic regulators, which affect the activities of many proteins and often play important roles in genetic regulatory networks. Improved performance of ProMAP over existing methods were illustrated through extensive simulation studies and real data examples. Applying ProMAP to the CPTAC-TCGA breast and ovarian cancer data sets, we identified many genome regions, including a few novel ones, whose CNA were associated with protein and or phosphoprotein abundances. For example, in breast tumors, a small region in 8p11.21 was recognized as the second biggest hub in the CNA-phosphoprotein regulatory map, and further investigation of the regulatory targets suggests the potential role of 8p11.21 CNA in perturbing oxygen binding and transport activities in tumor cells. This and other findings from our analyses help to characterize the impacts of CNAs on protein activity landscapes and cast light on the genetic regulation mechanisms underlying these tumors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Variações do Número de Cópias de DNA , Modelos Estatísticos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Feminino , Humanos , Espectrometria de Massas , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Proteogenômica , Proteoma
7.
Mol Cell Proteomics ; 18(8 suppl 1): S52-S65, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227599

RESUMO

In this work, we propose iProFun, an integrative analysis tool to screen for proteogenomic functional traits perturbed by DNA copy number alterations (CNAs) and DNA methylations. The goal is to characterize functional consequences of DNA copy number and methylation alterations in tumors and to facilitate screening for cancer drivers contributing to tumor initiation and progression. Specifically, we consider three functional molecular quantitative traits: mRNA expression levels, global protein abundances, and phosphoprotein abundances. We aim to identify those genes whose CNAs and/or DNA methylations have cis-associations with either some or all three types of molecular traits. Compared with analyzing each molecular trait separately, the joint modeling of multi-omics data enjoys several benefits: iProFun experienced enhanced power for detecting significant cis-associations shared across different omics data types, and it also achieved better accuracy in inferring cis-associations unique to certain type(s) of molecular trait(s). For example, unique associations of CNAs/methylations to global/phospho protein abundances may imply posttranslational regulations.We applied iProFun to ovarian high-grade serous carcinoma tumor data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and identified CNAs and methylations of 500 and 121 genes, respectively, affecting the cis-functional molecular quantitative traits of the corresponding genes. We observed substantial power gain via the joint analysis of iProFun. For example, iProFun identified 117 genes whose CNAs were associated with phosphoprotein abundances by leveraging mRNA expression levels and global protein abundances. By comparison, analyses based on phosphoprotein data alone identified none. A network analysis of these 117 genes revealed the known oncogene AKT1 as a key hub node interacting with many of the rest. In addition, iProFun identified one gene, BIN2, whose DNA methylation has cis-associations with its mRNA expression, global protein, and phosphoprotein abundances. These and other genes identified by iProFun could serve as potential drug targets for ovarian cancer.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Adulto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteogenômica/métodos
8.
Genome Res ; 27(11): 1859-1871, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021290

RESUMO

The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes (cis-eQTLs). More research is needed to identify effects of genetic variation on distant genes (trans-eQTLs) and understand their biological mechanisms. One common trans-eQTLs mechanism is "mediation" by a local (cis) transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are "cis-mediators" of trans-eQTLs, including those "cis-hubs" involved in regulation of many trans-genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying trans-eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study cis-mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of cis-hubs and trans-eQTL regulation across tissue types.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Locos de Características Quantitativas , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Seleção Genética , Distribuição Tecidual
9.
Biostatistics ; 20(4): 648-665, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939200

RESUMO

In quantitative proteomics, mass tag labeling techniques have been widely adopted in mass spectrometry experiments. These techniques allow peptides (short amino acid sequences) and proteins from multiple samples of a batch being detected and quantified in a single experiment, and as such greatly improve the efficiency of protein profiling. However, the batch-processing of samples also results in severe batch effects and non-ignorable missing data occurring at the batch level. Motivated by the breast cancer proteomic data from the Clinical Proteomic Tumor Analysis Consortium, in this work, we developed two tailored multivariate MIxed-effects SElection models (mvMISE) to jointly analyze multiple correlated peptides/proteins in labeled proteomics data, considering the batch effects and the non-ignorable missingness. By taking a multivariate approach, we can borrow information across multiple peptides of the same protein or multiple proteins from the same biological pathway, and thus achieve better statistical efficiency and biological interpretation. These two different models account for different correlation structures among a group of peptides or proteins. Specifically, to model multiple peptides from the same protein, we employed a factor-analytic random effects structure to characterize the high and similar correlations among peptides. To model biological dependence among multiple proteins in a functional pathway, we introduced a graphical lasso penalty on the error precision matrix, and implemented an efficient algorithm based on the alternating direction method of multipliers. Simulations demonstrated the advantages of the proposed models. Applying the proposed methods to the motivating data set, we identified phosphoproteins and biological pathways that showed different activity patterns in triple negative breast tumors versus other breast tumors. The proposed methods can also be applied to other high-dimensional multivariate analyses based on clustered data with or without non-ignorable missingness.


Assuntos
Algoritmos , Bioestatística/métodos , Modelos Estatísticos , Proteômica/métodos , Humanos
10.
Genet Epidemiol ; 42(5): 434-446, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29430690

RESUMO

There is a growing recognition that gene-environment interaction (G × E) plays a pivotal role in the development and progression of complex diseases. Despite a wealth of genetic data on various complex diseases/traits generated from association and sequencing studies, detecting G × E via genome-wide analysis remains challenging due to power issues. In genome-wide G × E studies, a common strategy to improve power is to first conduct a filtering test and retain only the genetic variants that pass the filtering step for subsequent G × E analyses. Two-stage, multistage, and unified tests have been proposed to jointly consider the filtering statistics in G × E tests. However, such G × E tests based on data from a single study may still be underpowered. Meanwhile, large-scale consortia have been formed to borrow strength across studies and populations. In this work, motivated by existing single-study G × E tests with filtering and the needs for meta-analysis G × E approaches based on consortia data, we propose a meta-analysis framework for detecting gene-based G × E effects, and introduce meta-analysis-based filtering statistics in the gene-level G × E tests. Simulations demonstrate the advantages of the proposed method-the ofGEM test. We apply the proposed tests to existing data from two breast cancer consortia to identify the genes harboring genetic variants with age-dependent penetrance (i.e., gene-age interaction effects). We develop an R software package ofGEM for the proposed meta-analysis tests.


Assuntos
Interação Gene-Ambiente , Fatores Etários , Idade de Início , Neoplasias da Mama/genética , Simulação por Computador , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos , Penetrância , Fatores de Risco
11.
Hum Genet ; 138(1): 49-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30536049

RESUMO

Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., "direct" inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere "reprogramming" during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.


Assuntos
Leucócitos/metabolismo , Leucócitos/patologia , Pais , Polimorfismo de Nucleotídeo Único , Homeostase do Telômero , Telômero/genética , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
12.
Am J Hum Genet ; 98(4): 697-708, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040689

RESUMO

Gene expression and its regulation can vary substantially across tissue types. In order to generate knowledge about gene expression in human tissues, the Genotype-Tissue Expression (GTEx) program has collected transcriptome data in a wide variety of tissue types from post-mortem donors. However, many tissue types are difficult to access and are not collected in every GTEx individual. Furthermore, in non-GTEx studies, the accessibility of certain tissue types greatly limits the feasibility and scale of studies of multi-tissue expression. In this work, we developed multi-tissue imputation methods to impute gene expression in uncollected or inaccessible tissues. Via simulation studies, we showed that the proposed methods outperform existing imputation methods in multi-tissue expression imputation and that incorporating imputed expression data can improve power to detect phenotype-expression correlations. By analyzing data from nine selected tissue types in the GTEx pilot project, we demonstrated that harnessing expression quantitative trait loci (eQTLs) and tissue-tissue expression-level correlations can aid imputation of transcriptome data from uncollected GTEx tissues. More importantly, we showed that by using GTEx data as a reference, one can impute expression levels in inaccessible tissues in non-GTEx expression studies.


Assuntos
Regulação da Expressão Gênica , Genótipo , Locos de Características Quantitativas , Transcriptoma , Humanos , Fenótipo , Projetos Piloto , Reprodutibilidade dos Testes
13.
J Med Genet ; 55(1): 64-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29151059

RESUMO

BACKGROUND: Leucocyte telomere length (TL) is a potential biomarker of ageing and risk for age-related disease. Leucocyte TL is heritable and shows substantial differences by race/ethnicity. Recent genome-wide association studies (GWAS) report ~10 loci harbouring SNPs associated with leucocyte TL, but these studies focus primarily on populations of European ancestry. OBJECTIVE: This study aims to enhance our understanding of genetic determinants of TL across populations. METHODS: We performed a GWAS of TL using data on 5075 Bangladeshi adults. We measured TL using one of two technologies (qPCR or a Luminex-based method) and used standardised variables as TL phenotypes. RESULTS: Our results replicate previously reported associations in the TERC and TERT regions (P=2.2×10-8 and P=6.4×10-6, respectively). We observed a novel association signal in the RTEL1 gene (intronic SNP rs2297439; P=2.82×10-7) that is independent of previously reported TL-associated SNPs in this region. The minor allele for rs2297439 is common in South Asian populations (≥0.25) but at lower frequencies in other populations (eg, 0.07 in Northern Europeans). Among the eight other previously reported association signals, all were directionally consistent with our study, but only rs8105767 (ZNF208) was nominally significant (P=0.003). SNP-based heritability estimates were as high as 44% when analysing close relatives but much lower when analysing distant relatives only. CONCLUSIONS: In this first GWAS of TL in a South Asian population, we replicate some, but not all, of the loci reported in prior GWAS of individuals of European ancestry, and we identify a novel second association signal at the RTEL1 locus.


Assuntos
Povo Asiático/genética , DNA Helicases/genética , Estudo de Associação Genômica Ampla , Telômero/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética
14.
Hum Mol Genet ; 25(21): 4835-4846, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28171663

RESUMO

Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina's HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 − 8). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 − 10) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 − 8) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 3/genética , Negro ou Afro-Americano/genética , Alelos , População Negra/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Receptores de Estrogênio/genética , Fatores de Risco , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
15.
PLoS Genet ; 10(12): e1004818, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474530

RESUMO

A large fraction of human genes are regulated by genetic variation near the transcribed sequence (cis-eQTL, expression quantitative trait locus), and many cis-eQTLs have implications for human disease. Less is known regarding the effects of genetic variation on expression of distant genes (trans-eQTLs) and their biological mechanisms. In this work, we use genome-wide data on SNPs and array-based expression measures from mononuclear cells obtained from a population-based cohort of 1,799 Bangladeshi individuals to characterize cis- and trans-eQTLs and determine if observed trans-eQTL associations are mediated by expression of transcripts in cis with the SNPs showing trans-association, using Sobel tests of mediation. We observed 434 independent trans-eQTL associations at a false-discovery rate of 0.05, and 189 of these trans-eQTLs were also cis-eQTLs (enrichment P<0.0001). Among these 189 trans-eQTL associations, 39 were significantly attenuated after adjusting for a cis-mediator based on Sobel P<10-5. We attempted to replicate 21 of these mediation signals in two European cohorts, and while only 7 trans-eQTL associations were present in one or both cohorts, 6 showed evidence of cis-mediation. Analyses of simulated data show that complete mediation will be observed as partial mediation in the presence of mediator measurement error or imperfect LD between measured and causal variants. Our data demonstrates that trans-associations can become significantly stronger or switch directions after adjusting for a potential mediator. Using simulated data, we demonstrate that this phenomenon is expected in the presence of strong cis-trans confounding and when the measured cis-transcript is correlated with the true (unmeasured) mediator. In conclusion, by applying mediation analysis to eQTL data, we show that a substantial fraction of observed trans-eQTL associations can be explained by cis-mediation. Future studies should focus on understanding the mechanisms underlying widespread cis-mediation and their relevance to disease biology, as well as using mediation analysis to improve eQTL discovery.


Assuntos
Povo Asiático/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Ásia/epidemiologia , Povo Asiático/estatística & dados numéricos , Bangladesh/epidemiologia , Quimioprevenção , Simulação por Computador , Perfilação da Expressão Gênica , Variação Genética , Humanos , Selênio/uso terapêutico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/prevenção & controle , Vitamina E/uso terapêutico
16.
Biometrics ; 72(2): 629-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26496228

RESUMO

In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data.


Assuntos
Interpretação Estatística de Dados , Interação Gene-Ambiente , Modelos Genéticos , Modelos Estatísticos , Algoritmos , Biometria/métodos , Simulação por Computador , Estudo de Associação Genômica Ampla , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Fatores Sexuais
17.
Am J Hum Genet ; 91(6): 977-86, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23159251

RESUMO

State-of-the-art next-generation-sequencing technologies can facilitate in-depth explorations of the human genome by investigating both common and rare variants. For the identification of genetic factors that are associated with disease risk or other complex phenotypes, methods have been proposed for jointly analyzing variants in a set (e.g., all coding SNPs in a gene). Variants in a properly defined set could be associated with risk or phenotype in a concerted fashion, and by accumulating information from them, one can improve power to detect genetic risk factors. Many set-based methods in the literature are based on statistics that can be written as the summation of variant statistics. Here, we propose taking the summation of the exponential of variant statistics as the set summary for association testing. From both Bayesian and frequentist perspectives, we provide theoretical justification for taking the sum of the exponential of variant statistics because it is particularly powerful for sparse alternatives-that is, compared with the large number of variants being tested in a set, only relatively few variants are associated with disease risk-a distinctive feature of genetic data. We applied the exponential combination gene-based test to a sequencing study in anticancer pharmacogenomics and uncovered mechanistic insights into genes and pathways related to chemotherapeutic susceptibility for an important class of oncologic drugs.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Estatísticos , Simulação por Computador , Predisposição Genética para Doença , Genoma Humano , Genótipo , Humanos , Modelos Genéticos , Farmacogenética , Fenótipo
18.
Genet Epidemiol ; 37(3): 286-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23468125

RESUMO

Accurate genetic association studies are crucial for the detection and the validation of disease determinants. One of the main confounding factors that affect accuracy is population stratification, and great efforts have been extended for the past decade to detect and to adjust for it. We have now efficient solutions for population stratification adjustment for single-SNP (where SNP is single-nucleotide polymorphisms) inference in genome-wide association studies, but it is unclear whether these solutions can be effectively applied to rare variation studies and in particular gene-based (or set-based) association methods that jointly analyze multiple rare and common variants. We examine here, both theoretically and empirically, the performance of two commonly used approaches for population stratification adjustment-genomic control and principal component analysis-when used on gene-based association tests. We show that, different from single-SNP inference, genes with diverse composition of rare and common variants may suffer from population stratification to various extent. The inflation in gene-level statistics could be impacted by the number and the allele frequency spectrum of SNPs in the gene, and by the gene-based testing method used in the analysis. As a consequence, using a universal inflation factor as a genomic control should be avoided in gene-based inference with sequencing data. We also demonstrate that caution needs to be exercised when using principal component adjustment because the accuracy of the adjusted analyses depends on the underlying population substructure, on the way the principal components are constructed, and on the number of principal components used to recover the substructure.


Assuntos
Estudos de Associação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Simulação por Computador , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Análise de Componente Principal
19.
Gastroenterology ; 144(4): 799-807.e24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266556

RESUMO

BACKGROUND & AIMS: Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. METHODS: We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. RESULTS: Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). CONCLUSIONS: In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to ß-catenin). The roles of these genes and their products in cancer pathogenesis warrant further investigation.


Assuntos
Neoplasias Colorretais/genética , Ciclina D2/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/epidemiologia , Proteínas de Ligação a DNA/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Laminina/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Medição de Risco , Distribuição por Sexo , Proteínas com Domínio T/genética
20.
Opt Express ; 22(2): 1842-51, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515193

RESUMO

A soft lithographic approach using a modified polyurethane acrylate (PUA) mold for the fabrication of sub-wavelength antireflective structure on polymer film is reported. By introducing an intermediate transferring PUA mold generated by an anodized aluminum oxide membrane, there is no need either to heat nor to deposit metal as a seed layer. Therefore, the most costly and time-consuming master preparation step in the conventional process chain is not a necessity. The soft PUA mold provides a high resolution of 100 nm with an aspect ratio of 1.7 and a conformal contact with the substrate and reduces the pressure needed during the imprinting steps. It is numerically verified that the antireflective film with nanopores has a similar fascinating broadband antireflective effect compared with that of its complementary nanonipple one. In our experiment, the average transmission efficiency of the PET film with dual-side nanopores can be enhanced to 98.7% at normal incidence and 92.5% at an incident angle of 60° over a range of 400~800 nm of the spectrum. The proposed method is simple and cost-effective and the fabricated antireflective polymer film can be mounted on the surfaces of various optical devices for the reduction of Fresnel reflections.


Assuntos
Membranas Artificiais , Polímeros/química , Poliuretanos/química , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA