Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer ; 130(5): 727-739, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897709

RESUMO

BACKGROUND: This study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of 8-chloro-adenosine (8-Cl-Ado) in patients with relapsed/refractory acute myeloid leukemia (AML). METHODS: 8-Cl-Ado was administered daily for 5 days; the starting dose was 100 mg/m2 , the highest dose tested was 800 mg/m2 . The end points were toxicity, disease response, and PK/PD measurements. RESULTS: The predominant nonhematologic toxicity was cardiac with grade ≥3 toxicity. Plasma PK in all patients suggested heterogeneity among patients, yet, some dose-dependency for the accumulation of 8-Cl-Ado. Two 8-Cl-Ado metabolites accumulated at similar levels to 8-Cl-Ado. Cellular PK in eight patients indicated accumulation of 8-Cl-ATP, which was associated with AML blast cytoreduction in peripheral blood. The authors determined the RP2D of 8-Cl-Ado to be 400 mg/m2 . CONCLUSIONS: Given the cardiac adverse events observed, patients require monitoring for arrhythmias and QT interval during infusion. Although peripheral blood cytoreduction was observed, responses were transient, suggesting combination strategies will be required.


Assuntos
2-Cloroadenosina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , 2-Cloroadenosina/análogos & derivados , 2-Cloroadenosina/farmacocinética , 2-Cloroadenosina/uso terapêutico
2.
Blood ; 132(21): 2249-2259, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254130

RESUMO

Ibrutinib is highly efficacious and used at 420 mg/d for treatment of chronic lymphocytic leukemia (CLL). We previously demonstrated a decline in Bruton's tyrosine kinase (BTK) protein levels in CLL cells after 1 cycle of ibrutinib, suggesting ibrutinib dose could be lowered after the first cycle without loss of biological effect. To test this postulate, a pilot study (NCT02801578) was designed to systematically reduce ibrutinib dosing within the same patient with CLL over the course of three 28-day cycles. After an initial cycle of 420 mg/d, the dose was reduced to 280 mg/d in cycle 2, and then to 140 mg/d in cycle 3. Eleven patients began study treatment, and 9 completed the 3 cycles. Plasma and intracellular pharmacokinetics (PK), BTK occupancy, and pharmacodynamic (PD) response at different doses of ibrutinib were compared. Plasma and intracellular levels of ibrutinib were dose-dependent, and even the lowest dose was sufficient to occupy, on average, more than 95% of BTK protein. In concert, BTK downstream signaling inhibition was maintained with 140 mg/d ibrutinib in cycle 3, and there were comparable reductions in total and phospho-BTK (Tyr223) protein levels across 3 cycles. Reductions of plasma chemokine CCL3 and CCL4 levels, considered to be biomarkers of ibrutinib response, were similar during the 3 cycles. These PK/PD data demonstrate that after 1 cycle of ibrutinib at the standard 420 mg/d dose, the dose can be reduced without losing biological activity. Clinical efficacy of lower doses needs to be systematically evaluated. Such dose reductions would lower drug cost, lessen untoward toxicity, and facilitate rationale-based combinations. This trial was registered at www.clinicaltrials.gov as #NCT02801578.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/metabolismo , Idoso , Relação Dose-Resposta a Droga , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Piperidinas , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
3.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30770553

RESUMO

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

4.
Br J Cancer ; 118(11): 1425-1433, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29765150

RESUMO

BACKGROUND: Proviral integration Moloney virus (PIM) kinases (PIM1, 2 and 3) are overexpressed in several tumour types and contribute to oncogenesis. AZD1208 is a potent ATP-competitive PIM kinase inhibitor investigated in patients with recurrent or refractory acute myeloid leukaemia (AML) or advanced solid tumours. METHODS: Two dose-escalation studies were performed to evaluate the safety and tolerability, and to define the maximum tolerated dose (MTD), of AZD1208 in AML and solid tumours. Secondary objectives were to evaluate the pharmacokinetics, pharmacodynamics (PD) and preliminary efficacy of AZD1208. RESULTS: Sixty-seven patients received treatment: 32 in the AML study over a 120-900 mg dose range, and 25 in the solid tumour study over a 120-800 mg dose range. Nearly all patients (98.5%) in both studies experienced adverse events, mostly gastrointestinal (92.5%). Dose-limiting toxicities included rash, fatigue and vomiting. AZD1208 was not tolerated at 900 mg, and the protocol-defined MTD was not confirmed. AZD1208 increased CYP3A4 activity after multiple dosing, resulting in increased drug clearance. There were no clinical responses; PD analysis showed biological activity of AZD1208. CONCLUSIONS: Despite the lack of single-agent clinical efficacy with AZD1208, PIM kinase inhibition may hold potential as an anticancer treatment, perhaps in combination with other agents.


Assuntos
Compostos de Bifenilo/administração & dosagem , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Tiazolidinas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Compostos de Bifenilo/efeitos adversos , Compostos de Bifenilo/farmacologia , Citocromo P-450 CYP3A/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Tiazolidinas/efeitos adversos , Tiazolidinas/farmacologia , Regulação para Cima , Adulto Jovem
5.
Br J Haematol ; 179(2): 266-271, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28737232

RESUMO

8-chloro-adenosine (8-Cl-Ado) is currently in phase-I clinical trials for acute myeloid leukaemia and chronic lymphocytic leukaemia (CLL). Previously, we demonstrated that treatment with 8-Cl-Ado leads to diminished ATP levels. We hypothesized that AMP-activated protein kinase (AMPK) signalling would be initiated in these cells, leading to induction of autophagy. AMPK activation and induction of autophagy were demonstrated during preclinical incubations in CLL cells with the analogues. Importantly, we extended similar observations in CLL lymphocytes during an 8-Cl-Ado phase-I trial. In conclusion, 8-Cl-Ado treatment induces autophagy in CLL lymphocytes in vitro as well as in vivo during clinical trial.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Leucemia Linfocítica Crônica de Células B , Linfócitos , Ensaios Clínicos Fase I como Assunto , Indução Enzimática , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos/enzimologia , Linfócitos/patologia , Masculino
6.
Blood ; 120(17): 3491-500, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22955922

RESUMO

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small molecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Piridazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
7.
Blood ; 118(3): 693-702, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21628411

RESUMO

Pim kinases are Ser/Thr kinases with multiple substrates that affect survival pathways. These proteins are overexpressed in acute myeloid leukemia (AML) blasts and we hypothesized that Pim kinase inhibition would affect AML cell survival. Imidazo[1,2-b]pyridazine compound, SGI-1776 inhibits Pim-1, Pim-2 and Pim-3, and was evaluated in AML-cell line, -xenograft model, and -primary blasts. Treatment of AML cells with SGI-1776 results in a concentration-dependent induction of apoptosis and we investigated its effect on Pim kinase functions. Phosphorylation of traditional Pim kinase targets, c-Myc(Ser62) and 4E-BP1 (Thr36/Thr47), were both decreased in actively cycling AML cell lines MV-4-11, MOLM-13 and OCI-AML-3. Levels of antiapoptotic proteins Bcl-2, Bcl-x(L), XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed. This was correlated with inhibition of global RNA and protein synthesis and MCL-1 transcript decline after SGI-1776 treatment. These data suggest that SGI-1776 mechanism in AML involves Mcl-1 protein reduction. Consistent with cell line data, xenograft model studies with mice bearing MV-4-11 tumors showed efficacy with SGI-1776. Importantly, SGI-1776 was also cytotoxic in AML primary cells, irrespective of FLT3 mutation status and resulted in Mcl-1 protein decline. Pim kinase inhibition may be a new strategy for AML treatment.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Piridazinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleosides Nucleotides Nucleic Acids ; 41(12): 1359-1374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35227162

RESUMO

8-Chloro-adenosine (8-Cl-Ado) is currently in phase I clinical trial. Activation of p53 and transactivation of p21 regulate cell fate after genotoxic insult. Using HCT-116-isogenic-cell-lines, we evaluated the role of p53/p21 after 8-Cl-Ado-mediated response. Following 30 µM 8-Cl-Ado treatment, RNA synthesis was inhibited, p53 protein was stabilized, and p21 expression was activated. None of the cell types were arrested in G1/S phase, however, cells lacking p53 were blocked in G2/M. These cells had the least increase in apoptotic cells, although clonogenic survival demonstrated equal inhibition in all 4 cell types. Collectively, irrespective of p53 and p21 status, 8-Cl-Ado-induced cytotoxicity was similar.


Assuntos
Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral
9.
Blood Cancer J ; 12(5): 80, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595730

RESUMO

Pirtobrutinib (LOXO-305), a reversible inhibitor of Bruton's tyrosine kinase (BTK), was designed as an alternative strategy to treat ibrutinib-resistant disease that develops due to C481 kinase domain mutations. The clinical activity of pirtobrutinib has been demonstrated in CLL, but the mechanism of action has not been investigated. We evaluated pirtobrutinib in 4 model systems: first, MEC-1, a CLL cell line overexpressing BTKWT, BTKC481S, or BTKC481R; second, murine models driven by MEC-1 overexpressing BTKWT or BTKC481S; third, in vitro incubations of primary CLL cells; and finally, CLL patients during pirtobrutinib therapy (NCT03740529, ClinicalTrials.gov). Pirtobrutinib inhibited BTK activation as well as downstream signaling in MEC-1 isogenic cells overexpressing BTKWT, BTKC481S, or BTKC481R. In mice, overall survival was short due to aggressive disease. Pirtobrutinib treatment for 2 weeks led to reduction of spleen and liver weight in BTKWT and BTKC481S cells, respectively. In vitro incubations of CLL cells harboring wild-type or mutant BTK had inhibition of the BCR pathway with either ibrutinib or pirtobrutinib treatment. Pirtobrutinib therapy resulted in inhibition of BTK phosphorylation and downstream signaling initially in all cases irrespective of their BTK profile, but these effects started to revert in cases with other BCR pathway mutations such as PLCG2 or PLEKHG5. Levels of CCL3 and CCL4 in plasma were marginally higher in patients with mutated BTK; however, there was a bimodal distribution. Both chemokines were decreased at early time points and mimicked BCR pathway protein changes. Collectively, these results demonstrate that pirtobrutinib is an effective BTK inhibitor for CLL harboring wild-type or mutant BTK as observed by changes in CCL3 and CCL4 biomarkers and suggest that alterations in BCR pathway signaling are the mechanism for its clinical effects. Long-term evaluation is needed for BTK gatekeeper residue variation along with pathologic kinase substitution or mutations in other proteins in the BCR pathway.


Assuntos
Leucemia Linfocítica Crônica de Células B , Tirosina Quinase da Agamaglobulinemia , Animais , Estudos Clínicos como Assunto , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
10.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326597

RESUMO

It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.

12.
Blood ; 114(19): 4150-7, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19734450

RESUMO

Pim kinases are involved in B-cell development and are overexpressed in B-cell chronic lymphocytic leukemia (CLL). We hypothesized that Pim kinase inhibition would affect B-cell survival. Identified from a screen of imidazo[1,2-b]pyridazine compounds, SGI-1776 inhibits Pim-1, Pim-2, and Pim-3. Treatment of CLL cells with SGI-1776 results in a concentration-dependent induction of apoptosis. To elucidate its mechanism of action, we evaluated the effect of SGI-1776 on Pim kinase function. Unlike in replicating cells, phosphorylation of traditional Pim-1 kinase targets, phospho-Bad (Ser112) and histone H3 (Ser10), and cell-cycle proteins were unaffected by SGI-1776, suggesting an alternative mechanism in CLL. Protein levels of total c-Myc as well as phospho-c-Myc(Ser62), a Pim-1 target site, were decreased after SGI-1776 treatment. Levels of antiapoptotic proteins Bcl-2, Bcl-X(L), XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed that was not caused by caspase-mediated cleavage of Mcl-1 protein. The mechanism of decline in Mcl-1 was at the RNA level and was correlated with inhibition of global RNA synthesis. Consistent with a decline in new RNA synthesis, MCL-1 transcript levels were decreased after treatment with SGI-1776. These data suggest that SGI-1776 induces apoptosis in CLL and that the mechanism involves Mcl-1 reduction.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Piridazinas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Humanos , Imidazóis/química , Técnicas In Vitro , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Linfócitos/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Piridazinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
13.
Am Soc Clin Oncol Educ Book ; 41: 92-106, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34010057

RESUMO

To realize the full potential of promising new anticancer drugs, it is of paramount importance to administer them at the right dose. The aim of this educational article is to provide several opportunities to optimize anticancer drug dosing, focusing on oral targeted therapies. First, therapeutic drug monitoring can optimize exposure in individual patients, if the optimal concentration is known. This approach is of particular interest in regard to oral kinase inhibitors with high interindividual pharmacokinetic variability. If exposure is related to response, then therapeutic drug monitoring is potentially feasible, although the clinical utility of this approach has not yet been established. Other approaches to reduce variability include administration of more frequent, smaller doses and administration under optimal prandial conditions. However, for many drugs, the labeled dose has not been demonstrated to be the optimal dose; for such agents, the vast majority of patients may be receiving excessive doses, which results in excessive toxicity. Furthermore, administration of lower off-label doses may reduce both medical and financial toxicity. These strategies should be applied from registration studies to clinical practice, with the goal of better optimizing anticancer treatment.


Assuntos
Antineoplásicos , Administração Oral , Antineoplásicos/efeitos adversos , Monitoramento de Medicamentos , Humanos
14.
J Hematol Oncol ; 14(1): 70, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902674

RESUMO

BACKGROUND: BCL-2 inhibition through venetoclax (VEN) targets acute myeloid leukemia (AML) blast cells and leukemic stem cells (LSCs). Although VEN-containing regimens yield 60-70% clinical response rates, the vast majority of patients inevitably suffer disease relapse, likely because of the persistence of drug-resistant LSCs. We previously reported preclinical activity of the ribonucleoside analog 8-chloro-adenosine (8-Cl-Ado) against AML blast cells and LSCs. Moreover, our ongoing phase I clinical trial of 8-Cl-Ado in patients with refractory/relapsed AML demonstrates encouraging clinical benefit. Of note, LSCs uniquely depend on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. VEN inhibits OXPHOS in LSCs, which eventually may escape the antileukemic activity of this drug. FAO is activated in LSCs isolated from patients with relapsed AML. METHODS: Using AML cell lines and LSC-enriched blast cells from pre-treatment AML patients, we evaluated the effects of 8-Cl-Ado, VEN and the 8-Cl-Ado/VEN combination on fatty acid metabolism, glycolysis and OXPHOS using liquid scintillation counting, a Seahorse XF Analyzer and gene set enrichment analysis (GSEA). Western blotting was used to validate results from GSEA. HPLC was used to measure intracellular accumulation of 8-Cl-ATP, the cytotoxic metabolite of 8-Cl-Ado. To quantify drug synergy, we created combination index plots using CompuSyn software. The log-rank Kaplan-Meier survival test was used to compare the survival distributions of the different treatment groups in a xenograft mouse model of AML. RESULTS: We here report that VEN and 8-Cl-Ado synergistically inhibited in vitro growth of AML cells. Furthermore, immunodeficient mice engrafted with MV4-11-Luc AML cells and treated with the combination of VEN plus 8-Cl-Ado had a significantly longer survival than mice treated with either drugs alone (p ≤ 0.006). We show here that 8-Cl-Ado in the LSC-enriched population suppressed FAO by downregulating gene expression of proteins involved in this pathway and significantly inhibited the oxygen consumption rate (OCR), an indicator of OXPHOS. By combining 8-Cl-Ado with VEN, we observed complete inhibition of OCR, suggesting this drug combination cooperates in targeting OXPHOS and the metabolic homeostasis of AML cells. CONCLUSION: Taken together, the results suggest that 8-Cl-Ado enhances the antileukemic activity of VEN and that this combination represents a promising therapeutic regimen for treatment of AML.


Assuntos
2-Cloroadenosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/uso terapêutico , 2-Cloroadenosina/farmacologia , 2-Cloroadenosina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosforilação Oxidativa , Sulfonamidas/farmacologia
15.
Blood Adv ; 5(16): 3134-3146, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34424317

RESUMO

Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton's tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal-related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2-/-γc-/- mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non-BTK-targeted therapeutics.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Piperidinas , Pirazóis/farmacologia , Pirimidinas/farmacologia
16.
Br J Haematol ; 140(6): 682-391, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18205859

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy that is slow-growing, and thus traditional DNA-replication directed chemotherapeutics are ineffective. We hypothesized that those agents that target RNA-directed processes would be successful in MM. To test this postulate, cordycepin, a polyadenylation inhibitor was used as a proof-of-principle towards MM cell lines. Cordycepin accumulated in MM.1S cells as its triphosphate metabolite, 3'dATP and subsequently inhibits RNA synthesis and cell growth. Cell death was via apoptosis induction and over 50% of treated cells were annexin-V positive after 48 h. As a consequence of RNA synthesis inhibition, we hypothesized that specific genes with short half-lives may be downregulated, leading to a reduction in protein. Indeed, a reduction in the transcript levels for MET, a survival gene for MM, was detected as early as 4 h and transcripts were reduced to c. 10% of control after 48 h. Interestingly, no significant change in protein levels was observed for Bcl-2, XIAP, Mcl-1 or survivin. Stabilization of p53 was not observed, and caspases-8, -9 and -3 showed activation following cordycepin treatment but were not required for cell death. Our results suggest that RNA-directed agents may be a new group of agents for the treatment of MM.


Assuntos
Antineoplásicos/farmacologia , Desoxiadenosinas/farmacologia , Mieloma Múltiplo/patologia , RNA Neoplásico/efeitos dos fármacos , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos de Desoxiadenina/farmacocinética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-met , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores de Fatores de Crescimento/biossíntese , Receptores de Fatores de Crescimento/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas
17.
Leuk Res ; 32(10): 1573-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18433867

RESUMO

The nucleotide substrate specificity of yeast poly(A) polymerase (yPAP) was examined with various ATP analogues of clinical relevance. The triphosphate derivatives of cladribine (2-Cl-dATP), clofarabine (Cl-F-ara-ATP), fludarabine (F-ara-ATP), and related derivatives were incubated with yPAP and 32P-radiolabeled RNA oligonucleotide primers in the absence of ATP to assay polyadenylation. While 2-Cl-ATP resulted in primer elongation, ara-ATP and F-ara-ATP were poor substrates for yPAP. In contrast, the triphosphate derivatives of cladribine (2-Cl-dATP), clofarabine (Cl-F-ara-ATP) and its corresponding deoxyribose derivative (Cl-F-dATP) were substrates and caused chain termination in the absence of ATP. We further investigated whether analogue incorporation at the 3'-terminus of RNA primers negatively impacts polyadenylation with ATP by generating RNA oligonucleotides containing either a terminal clofarabine, Cl-F-dAdo, or cladribine residue. Incorporation of any of these analogs blocks the ability of yPAP to extend RNA past the analogue site, impeding the addition of a poly(A)-tail. To determine whether modified ATP analogues exhibit a concentration-dependent effect on polyadenylation, poly(A)-tail synthesis by yPAP with modified ATP analogues in combination with a constant level of ATP was also examined. With all the ATP analogues assayed in these studies, there was a significant reduction in poly(A)-tail length with increasing amounts of analogue triphosphate. Taken together, our results suggest that polyadenylation inhibition may be a component in the mechanism of action of adenosine analogues.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antineoplásicos/química , Nucleotídeos de Desoxiadenina/química , Poliadenilação , Polinucleotídeo Adenililtransferase/antagonistas & inibidores , Nucleotídeos de Adenina/química , Arabinonucleosídeos/química , Cladribina/química , Clofarabina , Nucleotídeos de Desoxiadenina/metabolismo , Desoxiadenosinas/química , Polinucleotídeo Adenililtransferase/metabolismo , Especificidade por Substrato
18.
Clin Cancer Res ; 23(1): 181-192, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342398

RESUMO

PURPOSE: PI3K is a critical node in the B-cell receptor pathway, which is responsible for survival and proliferation of B-cell malignancies. Idelalisib, a PI3Kδ-isoform-specific inhibitor, has been approved to treat B-cell malignancies. Although biological activity of the drug has been evaluated, molecular mechanisms and signaling pathway disruption leading to the biological effects of idelalisib are not yet well defined. Prior laboratory reports have identified transcription and translation as the primary events for attenuation of PI3Kα isoform. We hypothesized that PI3Kδ-isoform inhibition by idelalisib should also affect gene transcription and protein translation. EXPERIMENTAL DESIGN: Using three mantle cell lymphoma cell lines and primary cells from patients, biological consequences such as apoptosis/cell-cycle analysis, as well as RNA/protein synthesis were evaluated. Proteomics analyses (RPPA and immunoblot assays) defined molecular events downstream of PI3K/AKT cassette. RESULTS: Idelalisib treatment resulted in inhibition of protein synthesis, which correlated with reduction in cell size and cell growth. A moderate loss of viability without any change in cell-cycle profile was observed. Idelalisib treatment inhibited AKT activation, an immediate downstream PI3K effector, and also reduced phosphorylation levels of downstream AKT/mTOR pathway proteins such as PRAS40. In addition, idelalisib treatment impeded activation of the MAPK pathway, and MEK, ERK and p90RSK phosphorylation levels were reduced. Reduction in AKT, PDK1, and MEK phosphorylation correlated with protein synthesis inhibition. CONCLUSIONS: Collectively, these results clarify the molecular mechanisms of actions and may provide biomarkers and targets for combination with idelalisib in B-cell malignancies. Clin Cancer Res; 23(1); 181-92. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Purinas/farmacologia , Quinazolinonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Leuk Lymphoma ; 57(12): 2863-2873, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27054578

RESUMO

Pim kinases phosphorylate and regulate a number of key acute myeloid leukemia (AML) cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, and MOLM-16) and FLT3-ITD mutated (MOLM-13 and MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 µM AZD1208 for 24 h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR (Ser2448), p70S6K (Thr389), S6 (Ser235/236), and 4E-BP1 (Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provides insights into the mechanism of AZD1208.


Assuntos
Compostos de Bifenilo/farmacologia , Leucemia Mieloide Aguda/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiazolidinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Células Tumorais Cultivadas
20.
Blood ; 112(9): 3538-40, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18948586
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA