Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882761

RESUMO

An aeromagnetic survey is an important method in magnetic anomaly detection and geophysical prospecting. The magnetic field is typically measured by optically pumped magnetometers (OPM) installed on the aircraft. The measurement accuracy of the OPM is easily affected by the platform-generated magnetic fields. Therefore, aeromagnetic compensation is necessary. The traditional compensation model only considers the permanent, induced, and eddy current interference magnetic field of the aircraft platform. However, the interference field produced by the avionics system, and the relative motion between the aircraft and the magnetometer, are still not taken into account. To address this issue, we proposed a novel strategy to eliminate the additional interference of the platform with two OPMs. Among them, the OPM located farther away from the aircraft serves as a sensing magnetometer, whereas the near OPM serves as a reference magnetometer. The coherent noise suppression method is used to process the residual magnetic field interference after compensation. By establishing the interference magnetic transfer function between the two sensors, the interference field can be suppressed. The results of the experiments demonstrate the effectiveness of the novel strategy, and the standard deviation of residual interference drops from 0.065 nT to 0.045 nT.

2.
Sensors (Basel) ; 16(12)2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27999322

RESUMO

The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA