Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1447-1453, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252892

RESUMO

Passive solar heating and radiative cooling have attracted great interest in global energy consumption reduction due to their unique electricity-free advantage. However, static single radiation cooling or solar heating would lead to overcooling or overheating in cold and hot weather, respectively. To achieve a facile, effective approach for dynamic thermal management, a novel structured polyethylene (PE) film was engineered with a switchable cooling and heating mode obtained through a moisture transfer technique. The 100 µm PE film showed excellent solar modulation from 0.92 (dried state) to 0.32 (wetted state) and thermal modulation from 0.86 (dried state) to 0.05 (wetted state). Outdoor experiments demonstrated effective thermal regulation during both daytime and nighttime. Furthermore, our designed PE film can save 1.3-41.0% of annual energy consumption across the whole country of China. This dual solar and thermal regulation mechanism is very promising for guiding scalable approaches to energy-saving temperature regulation.

2.
Small ; : e2312226, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511539

RESUMO

Ice accretion can significantly impact the efficiency and safety of outdoor equipment. Solar-thermal superhydrophobic surface is an effective strategy for anti-icing and deicing. However, droplets easily turn to the Wenzel state during the icing and melting cycle processes, significantly increasing the adhesion and making the droplets difficult to remove from the surface. In this work, a triple-scale solar-thermal superhydrophobic surface is prepared on stainless steel 304 by etching, in situ oxidation, and spin-coating TiN nanoparticles for highly efficient deicing and anti-icing. The multi-scale structure enabled the droplets to recover the Cassie state completely after melting. The contact angle decreased from 162.5° to 136.7° during the icing process and gradually increased to 162.1° during the melting process. In addition, metal oxides and TiN nanoparticles enabled the superhydrophobic surface to exhibit a high solar absorptivity ( α ¯ solar ${{\bar{\alpha }}_{{\mathrm{solar}}}}$ = 0.925). The synergistic effect of the superhydrophobicity and the solar-thermal performance endowed the designed multi-scale surface with excellent anti-icing and deicing performance. This work contributed to the practical development of anti-icing and deicing applications based on solar-thermal superhydrophobic surfaces.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38819668

RESUMO

PURPOSE: Standardized reporting of treatment response in oncology patients has traditionally relied on methods like RECIST, PERCIST and Deauville score. These endpoints assess only a few lesions, potentially overlooking the response heterogeneity of all disease. This study hypothesizes that comprehensive spatial-temporal evaluation of all individual lesions is necessary for superior prognostication of clinical outcome. METHODS: [18F]FDG PET/CT scans from 241 patients (127 diffuse large B-cell lymphoma (DLBCL) and 114 non-small cell lung cancer (NSCLC)) were retrospectively obtained at baseline and either during chemotherapy or post-chemoradiotherapy. An automated TRAQinform IQ software (AIQ Solutions) analyzed the images, performing quantification of change in regions of interest suspicious of cancer (lesion-ROI). Multivariable Cox proportional hazards (CoxPH) models were trained to predict overall survival (OS) with varied sets of quantitative features and lesion-ROI, compared by bootstrapping with C-index and t-tests. The best-fit model was compared to automated versions of previously established methods like RECIST, PERCIST and Deauville score. RESULTS: Multivariable CoxPH models demonstrated superior prognostic power when trained with features quantifying response heterogeneity in all individual lesion-ROI in DLBCL (C-index = 0.84, p < 0.001) and NSCLC (C-index = 0.71, p < 0.001). Prognostic power significantly deteriorated (p < 0.001) when using subsets of lesion-ROI (C-index = 0.78 and 0.67 for DLBCL and NSCLC, respectively) or excluding response heterogeneity (C-index = 0.67 and 0.70). RECIST, PERCIST, and Deauville score could not significantly associate with OS (C-index < 0.65 and p > 0.1), performing significantly worse than the multivariable models (p < 0.001). CONCLUSIONS: Quantitative evaluation of response heterogeneity of all individual lesions is necessary for the superior prognostication of clinical outcome.

4.
Pharmacol Res ; 199: 107029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056513

RESUMO

Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.


Assuntos
Dissecção Aórtica , Proteoma , Camundongos , Animais , Humanos , Proteínas de Ligação ao Cálcio , Proteômica , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Modelos Animais de Doenças , Dissecção Aórtica/tratamento farmacológico
5.
Acta Pharmacol Sin ; 45(6): 1316-1320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459255

RESUMO

Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Hiperlipidemia Familiar Combinada , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Aterosclerose/tratamento farmacológico , Humanos , Camundongos , Hiperlipidemia Familiar Combinada/tratamento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Triglicerídeos/sangue , Dieta Hiperlipídica , Atorvastatina/uso terapêutico , Atorvastatina/farmacologia
6.
Acta Pharmacol Sin ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

7.
Postepy Dermatol Alergol ; 41(3): 314-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027699

RESUMO

Introduction: One common and very upsetting side effect of burn injuries is scarring, which presents serious difficulties for patients and medical professionals alike. Aim: To assess a new therapeutic approach for treating scars following burn repair procedures in terms of its clinical efficacy. Material and methods: This method administers Hirudoid under ultrasound guidance in addition to fractional CO2 laser treatment. An extensive analysis of the effects of this combination treatment on functional results, patient satisfaction, and scar appearance is being conducted as part of this research. Fractional CO2 laser treatment is utilized for its capacity to stimulate collagen remodelling and decrease scar hypertrophy, while Hirudoid, a topical medicine containing heparinoid, is used to minimize inflammation and enhance tissue healing. Enrolling patients who have had burn repair surgery is the goal of a quasi-experimental study. Conventional scar care methods are performed on the control group, whereas the experimental group is treated with fractional CO2 laser therapy after applying Hirudoid under ultrasound guidance. Throughout the research period, clinical evaluations are carried out on a regular basis. These evaluations cover scar features, pain thresholds, and patient-reported results. Results: The first findings show that the experimental group significantly outperformed the control group in terms of overall look, pigmentation, and scar texture. Functional examinations point to possible improvements in terms of scar flexibility and the range of motion, while patient-reported outcomes show improved satisfaction with the combination therapy. In order to guarantee the combination therapy's viability and tolerance in a clinical context, its side effects and safety profiles are also extensively assessed. In order to improve scar management following burn healing, the study intends to provide important insights into the creation of more patient-friendly and successful therapies. Conclusions: A potential approach to enhancing the clinical results of burn scar treatment is the study of fractional CO2 laser therapy in conjunction with ultrasound-guided Hirudoid. Enhancing scar management tactics via the combination of sophisticated technology and therapy modalities may eventually improve the quality of life for burn injury victims.

8.
Langmuir ; 39(25): 8900-8907, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294930

RESUMO

Solar-driven interfacial evaporation has caught wide attention for water purification due to its green and environment-friendly properties. The key issue is how to effectively utilize solar radiation for evaporation. To fully understand the thermal management of the solar evaporation process, a multiphysics model has been built by the finite element method to clarify the heat transfer process for the improvement of solar evaporation. Simulation results indicate that the evaporation performance can be improved by tuning the thermal loss, local heating, convective mass transfer, and evaporation area. The thermal radiation loss of the evaporation interface and thermal convection loss to the bottom water should be avoided, and local heating is good for evaporation. Convection above the interface can improve evaporation performance, although it would enhance the thermal convective loss. In addition, evaporation also can be improved by increasing the evaporation area from 2D to 3D structures. Experimental results confirm that the solar evaporation ratio can be improved from 0.795 kg m-2 h-1 to 1.122 kg m-2 h-1 at 1 sun with a 3D interface and thermal insulation between the interface and bottom water. These results can provide a design principle for the solar evaporation system based on thermal management.

9.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36099317

RESUMO

Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.

10.
Nano Lett ; 21(3): 1412-1418, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524258

RESUMO

Passive daytime radiative cooling (PDRC) has drawn significant attention recently for electricity-free cooling. Porous polymers are attractive for PDRC since they have excellent performance and scalability. A fundamental question remaining is how PDRC performance depends on pore properties (e.g., radius, porosity), which is critical to guiding future structure designs. In this work, optical simulations are carried out to answer this question, and effects of pore size, porosity, and thickness are studied. We find that mixed nanopores (e.g., radii of 100 and 200 nm) have a much higher solar reflectance R̅solar (0.951) than the single-sized pores (0.811) at a thickness of 300 µm. With an Al substrate underneath, R̅solar, thermal emittance ε̅LWIR, and net cooling power Pcool reach 0.980, 0.984, and 72 W/m2, respectively, under a semihumid atmospheric condition. These simulation results provide a guide for designing high-performance porous coating for PDRC applications.

11.
J Neuroradiol ; 49(1): 66-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32540338

RESUMO

OBJECTIVE: To investigate structural and functional alterations in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) compared with healthy controls. METHODS: Twenty-seven patients with polysomnography-confirmed iRBD and 33 healthy subjects were recruited. All subjects underwent a 3-tesla structural and resting-state functional magnetic resonance imaging (fMRI) examination. Voxel-based morphometry (VBM) analysis was performed to assess grey matter alterations between groups. The amplitude of low-frequency fluctuations (ALFF) was calculated and then compared to measure differences in spontaneous brain activity. Correlations were performed to explore associations between imaging metrics and clinical characteristics in iRBD patients. RESULTS: Compared with healthy controls, patients with iRBD had decreased grey matter volume in the frontal, temporal, parietal, occipital cortices as well as increased grey matter volume in cerebellum posterior lobe, putamen, and thalamus. Patients with iRBD also exhibited increased ALFF values in the right parahippocampal gyrus. Olfaction correlated with ALFF value changes in occipital cortices. CONCLUSIONS: Patients with iRBD had widespread decreases of grey matter volume. Increases of grey matter volume in cerebellum, putamen, and thalamus may suggest a compensatory effect, while the altered ALFF values in parahippocampal gyrus and occipital cortices may play a role in the underlying process of neurodegeneration in this disorder.


Assuntos
Transtorno do Comportamento do Sono REM , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Tálamo
12.
Mov Disord ; 35(3): 478-485, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846123

RESUMO

BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder is an early sign of neurodegenerative disease. This study aimed to quantitatively evaluate iron content in idiopathic rapid eye movement sleep behavior disorder patients using quantitative susceptibility mapping and to examine the potential of this technique to identify the prodromal stage of α-synucleinopathies. METHODS: Twenty-five idiopathic rapid eye movement sleep behavior disorder patients, 32 Parkinson's disease patients, and 50 healthy controls underwent quantitative susceptibility mapping. The mean magnetic susceptibility values within the bilateral substantia nigra, globus pallidus, red nucleus, head of the caudate nucleus, and putamen were calculated and compared among groups. The relationships between the values and the clinical features of idiopathic rapid eye movement sleep behavior disorder and Parkinson's disease were measured using correlation analysis. RESULTS: Idiopathic rapid eye movement sleep behavior disorder patients had elevated iron in the bilateral substantia nigra compared with healthy controls. Parkinson's disease patients had increased iron in the bilateral substantia nigra, globus pallidus, and left red nucleus compared with healthy controls and had elevated iron levels in the bilateral substantia nigra compared with idiopathic rapid eye movement sleep behavior disorder patients. Mean magnetic susceptibility values were positively correlated with disease duration in the left substantia nigra in idiopathic rapid eye movement sleep behavior disorder patients. CONCLUSIONS: Quantitative susceptibility mapping can detect increased iron in the substantia nigra in idiopathic rapid eye movement sleep behavior disorder, which becomes more significant as the disorder progresses. This technique has the potential to be an early objective neuroimaging marker for detecting α-synucleinopathies. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Transtorno do Comportamento do Sono REM , Globo Pálido , Humanos , Ferro , Substância Negra
13.
Reprod Domest Anim ; 55(12): 1714-1724, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969084

RESUMO

Boar sperm are susceptible to oxidative damage caused by reactive oxygen species (ROS) during storage. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an important therapeutic target, because it is a cellular metabolism energy sensor and key signalling kinase in spermatozoa. We evaluated the effects of rosmarinic acid (RA), an antioxidant, on boar sperm during liquid storage to determine whether it protects boar sperm via AMPK activation. Boar ejaculates were diluted with Modena extender with different concentrations of RA and stored at 17°C for 9 days. Sperm quality parameters, antioxidant capacity, energy metabolism, AMPK phosphorylation and fertility were analysed. Compared with the control, 40 µmol/L significantly improved sperm motility, plasma membrane integrity and acrosome integrity (p < .05). The effective storage time of boar sperm was up to 9 days. On the third and seventh days, the sperm with RA exhibited increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, adenosine triphosphate (ATP) content, mitochondrial membrane potential (ΔΨm) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, whereas malondialdehyde (MDA) content was significantly decreased (p < .05). Western blot showed that RA, as well as AICAR (AMPK activator), promoted AMPK phosphorylation, whereas Compound C (AMPK inhibitor) inhibited this effect. The sperm-zona pellucida binding experiment showed that 40 µmol/L RA increased the number of sperm attached to the zona pellucida (p < .05). These findings suggest meaningful methods for improved preservation of boar sperm in vitro and provide new insights into the mechanism by which RA protects sperm cells from oxidative damage via AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Preservação do Sêmen/veterinária , Sus scrofa , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Metabolismo Energético , Masculino , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/fisiologia , Ácido Rosmarínico
15.
ACS Appl Mater Interfaces ; 16(5): 6513-6522, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38273444

RESUMO

Passive cooling technologies are one of the promising solutions to the global energy crisis due to no consumption of fossil fuels during operation. However, the existing radiative and evaporative coolers still have problems achieving daytime subambient cooling while maintaining evaporation over the long term. Here, we propose a self-sustained and insulated radiative/evaporative cooler (SIREC), which consists of a porous polyethylene film (P-PE) at the top, an air layer in the middle, and poly(vinyl alcohol) hydrogel with lithium bromide (PLH) at the bottom. In particular, the P-PE shows high solar reflectance (R̅solar = 0.91) and long-wave infrared transmittance (τ̅LWIR = 0.92), which reflects sunlight while enhancing the direct radiative heat transfer between outer space and PLH (ε̅LWIR = 0.96) for sky radiative cooling. In addition, the desirable vapor permeability (579 s m-1) of the P-PE also results in good compatibility with PLH for evaporative cooling (EC). Moreover, the PLH's ability to harvest atmospheric water at night provides self-sustainment for daytime EC. The air layer between P-PE and PLH further enhances the subambient cooling performance of the SIREC. These findings indicate promising prospects for the integration of passive cooling technologies.

16.
RSC Adv ; 14(33): 24031-24038, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39086517

RESUMO

The development of inexpensive non-precious metal materials as high-efficiency stable oxygen reduction reaction (ORR) catalysts holds significant promise for application in metal-air batteries. Here, we synthesized a series of nanohybrids formed from MnO nanoparticles anchored on N-doped Ketjenblack carbon (MnO/NC) via a facile hydrothermal reaction and pyrolysis strategy. We systematically investigated the influence of pyrolysis temperature (600 to 900 °C) on the ORR activities of the MnO/NC samples. At the optimized pyrolysis temperature of 900 °C, the resulting MnO/NC (referred to as MnO/NC-900) exhibited superior ORR activity (onset potential = 0.85 V; half-wave potential = 0.74 V), surpassing other MnO/NC samples and nitrogen-doped Ketjenblack carbon (NC). Additionally, MnO/NC-900 demonstrated better stability than the Pt/C catalyst. The enhanced ORR activity of MnO/NC-900 was attributed to the synergy effect between MnO and NC, abundant surface carbon defects and surface-active components (N species and oxygen vacancies). Notably, the Zinc-air battery (ZAB) equipped MnO/NC-900 as the cathode catalyst delivered promising performance metrics, including a high peak power density of 146.5 mW cm-2, a large specific capacity of 795 mA h gZn -1, and an excellent cyclability up to 360 cycles. These results underscore the potential of this nanohybrid for applications in energy storage devices.

17.
Front Aging Neurosci ; 16: 1330193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374884

RESUMO

Objective: To determine whether the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with cognitive impairment (CI) in community-dwelling Chinese older adults, and to investigate whether this relationship is modified by the Apolipoprotein E (APOE) ɛ4 allele. Methods: The study is a secondary analysis of 703 participants aged ≥60 years randomly enrolled from the Beijing Longitudinal Study of Aging II prospective cohort. The education-adjusted Mini-Mental State Examination and the Clinical Dementia Rating Scale were used to measure the cognitive performance of the subjects. The main effects and interactions (additive and multiplicative) of the BDNF Met and the APOE ε4 alleles on CI were estimated by logistic regression models. Results: In total, 84 out of 703 older adults aged ≥60 years old had CI. No significant difference was observed in the risk of CI between participants with the BDNF Met allele and that of subjects without the BDNF Met allele (p = 0.213; p = 0.164). Individuals carrying both the BDNF Met and APOE ε4 alleles had an almost 1.5-fold increased odds of CI compared with carriers of the BDNF Met allele but without the APOE ε4 allele. The additive association indicated a positive interaction of both BDNF Met and APOE ε4 alleles with wide CIs (p = 0.021; p = 0.018). Conclusion: The results suggest that the APOE ε4 allele may be a potential modifier for the association of the BDNF Val66Met polymorphism with CI in community-dwelling older adults.

18.
J Adv Res ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432393

RESUMO

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

19.
J Clin Invest ; 134(5)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206764

RESUMO

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease continuum from simple steatosis to nonalcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD, although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NAFLD, the identification of potential therapeutic targets is clinically important. Here, we demonstrated that tripartite motif 56 (TRIM56) protein abundance was markedly downregulated in the livers of individuals with NAFLD and of mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactome and transcriptome profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified the lipogenesis factor fatty acid synthase (FASN) as a direct binding partner of TRIM56. TRIM56 directly interacted with FASN and triggered its K48-linked ubiquitination-dependent degradation. Finally, using artificial intelligence-based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) that potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with an optimal safety, tolerability, and pharmacokinetics profile. Our findings provide proof of concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Inteligência Artificial , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/genética , Hepatopatia Gordurosa não Alcoólica/genética
20.
ACS Appl Mater Interfaces ; 15(3): 4122-4131, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642885

RESUMO

Visibly transparent radiative cooling (VTRC) shows great potential in energy-saving buildings or car glasses for lighting and cooling. How to balance the lighting and cooling performance is of significance to VTRC. In addition, the thermal radiative performance on the inner side should also be determined for cooling. Here, we designed a Janus VTRC coating consisting of a thermal emitter, PDMS, and a transparent near-infrared reflector, TiO2/Ag/TiO2. On the outer side, the visible transmittance T̅vis = 0.70, while the solar reflectance R̅solar = 0.40, and the thermal emittance in the atmospheric window ε̅LWIR = 0.94 can be achieved experimentally. On the inner side, the thermal emittance ε̅IR can be 0.90 or 0.01 depending on the substrate (glass or near-infrared reflector), which acts as the radiative conductor or barrier for energy saving in hot or cold internal situations. Compared with glass, the designed PDMS/NIR/glass achieves an average temperature drop of 14.6 °C experimentally. The energy-saving calculation based on seven cities in China shows that the VTRC coating can save 34-44% of the annual cooling energy consumption. This Janus visibly transparent radiative cooling technology with internal and external regulation provides a potential strategy for energy saving under the requirement of simultaneous lighting and cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA