Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.043
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2122053120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252969

RESUMO

The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
2.
Dev Biol ; 512: 13-25, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703942

RESUMO

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Mitocôndrias , Espermatogênese , Testículo , Animais , Espermatogênese/genética , Espermatogênese/fisiologia , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Mitocôndrias/metabolismo , Testículo/metabolismo , Morfogênese/genética , Transdução de Sinais , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Transcrição STAT/metabolismo , Espermátides/metabolismo
3.
Circulation ; 149(9): 684-706, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994595

RESUMO

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo
4.
Stem Cells ; 42(7): 662-674, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655781

RESUMO

Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.


Assuntos
Diferenciação Celular , Cortactina , Homeostase , Osteoblastos , Osteoclastos , Proteínas Proto-Oncogênicas c-cbl , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Osteoclastos/metabolismo , Camundongos , Cortactina/metabolismo , Cortactina/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Osso e Ossos/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Ligante RANK/metabolismo , Transdução de Sinais
5.
Mol Psychiatry ; 29(3): 767-781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238548

RESUMO

BACKGROUND: Although network analysis studies of psychiatric syndromes have increased in recent years, most have emphasized centrality symptoms and robust edges. Broadening the focus to include bridge symptoms within a systematic review could help to elucidate symptoms having the strongest links in network models of psychiatric syndromes. We conducted this systematic review and statistical evaluation of network analyses on depressive and anxiety symptoms to identify the most central symptoms and bridge symptoms, as well as the most robust edge indices of networks. METHODS: A systematic literature search was performed in PubMed, PsycINFO, Web of Science, and EMBASE databases from their inception to May 25, 2022. To determine the most influential symptoms and connections, we analyzed centrality and bridge centrality rankings and aggregated the most robust symptom connections into a summary network. After determining the most central symptoms and bridge symptoms across network models, heterogeneity across studies was examined using linear logistic regression. RESULTS: Thirty-three studies with 78,721 participants were included in this systematic review. Seventeen studies with 23 cross-sectional networks based on the Patient Health Questionnaire (PHQ) and Generalized Anxiety Disorder (GAD-7) assessments of clinical and community samples were examined using centrality scores. Twelve cross-sectional networks based on the PHQ and GAD-7 assessments were examined using bridge centrality scores. We found substantial variability between study samples and network features. 'Sad mood', 'Uncontrollable worry', and 'Worrying too much' were the most central symptoms, while 'Sad mood', 'Restlessness', and 'Motor disturbance' were the most frequent bridge centrality symptoms. In addition, the connection between 'Sleep' and 'Fatigue' was the most frequent edge for the depressive and anxiety symptoms network model. CONCLUSION: Central symptoms, bridge symptoms and robust edges identified in this systematic review can be viewed as potential intervention targets. We also identified gaps in the literature and future directions for network analysis of comorbid depression and anxiety.


Assuntos
Ansiedade , Depressão , Feminino , Humanos , Masculino , Ansiedade/complicações , Ansiedade/terapia , Transtornos de Ansiedade , Estudos Transversais , Depressão/complicações , Depressão/terapia
6.
Brain ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739753

RESUMO

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

7.
Cell ; 141(7): 1230-40, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603003

RESUMO

Light plays a profound role in plant development, yet how photoreceptor excitation directs phenotypic plasticity remains elusive. One of the earliest effects of light is the regulated translocation of the red/far-red photoreceptors, phytochromes, from the cytoplasm to subnuclear foci called phytochrome nuclear bodies. The function of these nuclear bodies is unknown. We report the identification of hemera, a seedling lethal mutant of Arabidopsis with altered phytochrome nuclear body patterns. hemera mutants are impaired in all phytochrome responses examined, including proteolysis of phytochrome A and phytochrome-interacting transcription factors. HEMERA was identified previously as pTAC12, a component of a plastid complex associated with transcription. Here, we show that HEMERA has a function in the nucleus, where it acts specifically in phytochrome signaling, is predicted to be structurally similar to the multiubiquitin-binding protein, RAD23, and can partially rescue yeast rad23mutants. Together, these results implicate phytochrome nuclear bodies as sites of proteolysis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fitocromo A/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde/análise , Peptídeos e Proteínas de Sinalização Intracelular , Luz , Microscopia Confocal , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sementes/metabolismo , Transdução de Sinais
8.
Chem Soc Rev ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005165

RESUMO

As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.

9.
Genome Res ; 31(5): 890-899, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33875481

RESUMO

Single nucleotide variants (SNVs) within polyadenylation signals (PASs), a specific six-nucleotide sequence required for mRNA maturation, can impair RNA-level gene expression and cause human diseases. However, there is a lack of genome-wide investigation and systematic confirmation tools for identifying PAS variants. Here, we present a computational strategy to integrate the most reliable resources for discovering distinct genomic features of PAS variants and also develop a credible and convenient experimental tool to validate the effect of PAS variants on expression of disease-associated genes. This approach will greatly accelerate the deciphering of PAS variation-related human diseases.


Assuntos
Poliadenilação , RNA Mensageiro , RNA , Sequência de Bases , Doença/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Mol Carcinog ; 63(4): 677-687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362848

RESUMO

N6 -methyladenosine (m6 A) is the most prevalent epigenetic modification on eukaryotic messenger RNAs. Recent studies have focused on elucidating the key role of m6 A modification patterns in tumor progression. However, the relationship between m6 A and transcriptional regulation remains elusive. Nanopore technology enables the quantification of m6 A levels at each genomic site. In this study, a pair of tumor tissues and adjacent normal tissues from clear cell renal cell carcinoma (ccRCC) surgical samples were collected for Nanopore direct RNA sequencing. We identified 9644 genes displaying anomalous m6 A modifications, with 5343 genes upregulated and 4301 genes downregulated. Among these, 5224 genes were regarded as dysregulated genes, encompassing abnormal regulation of both m6 A modification and RNA expression. Gene Set Enrichment Analysis revealed an enrichment of these genes in pathways related to renal system progress and fatty acid metabolic progress. Furthermore, the χ2 test demonstrated a significant association between the levels of m6 A in dysregulated genes and their transcriptional expression levels. Additionally, we identified four obesity-associated genes (FTO, LEPR, ADIPOR2, and NPY5R) among the dysregulated genes. Further analyses using public databases revealed that these four genes were all related to the prognosis and diagnosis of ccRCC. This study introduced the novel approach of employing conjoint analysis of m6 A modification and RNA expression based on Nanopore sequencing to explore potential disease-related genes. Our work demonstrates the feasibility of the application of Nanopore sequencing technology in RNA epigenetic regulation research and identifies new potential therapeutic targets for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sequenciamento por Nanoporos , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Transcriptoma , Epigenoma , Epigênese Genética , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
11.
BMC Microbiol ; 24(1): 90, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493114

RESUMO

BACKGROUND: To investigate the differences in bacterial and fungal community structure and diversity in conjunctival tissue of healthy and diabetic mice. METHODS: RNA-seq assays and high-throughput sequencing of bacterial 16 S rDNA and fungal internal transcribed spacer (ITS) gene sequences were used to identify differentially expressed host genes and fungal composition profiles in conjunctival tissues of diabetic BKS-db/db mice and BKS (control) mice. Functional enrichment analysis of differentially expressed genes and the correlation between the relative abundance of bacterial and fungal taxa in the intestinal mucosa were also performed. RESULTS: Totally, 449 differential up-regulated genes and 1,006 down-regulated genes were identified in the conjunctival tissues of diabetic mice. The differentially expressed genes were mainly enriched in metabolism-related functions and pathways. A decrease in conjunctival bacterial species diversity and abundance in diabetic mice compared to control mice. In contrast, fungal species richness and diversity were not affected by diabetes. The microbial colonies were mainly associated with cellular process pathways regulating carbohydrate and lipid metabolism, as well as cell growth and death. Additionally, some interactions between bacteria and fungi at different taxonomic levels were also observed. CONCLUSION: The present study revealed significant differences in the abundance and composition of bacterial and fungal communities in the conjunctival tissue of diabetic mice compared to control mice. The study also highlighted interactions between bacteria and fungi at different taxonomic levels. These findings may have implications for the diagnosis and treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbiota , Animais , Camundongos , Fungos/genética , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala
12.
Electrophoresis ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988182

RESUMO

This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.

13.
J Exp Bot ; 75(8): 2584-2597, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314882

RESUMO

Gray mold caused by the necrotrophic fungal pathogen Botrytis cinerea is one of the most destructive diseases in rose (Rosa spp.). Rose infection by B. cinerea leads to severe economic losses due to necrosis, tissue collapse, and rot. In rose, cytokinins (CKs) positively regulate a defense response to B. cinerea, but little is known about the underlying molecular mechanisms. Here, we characterized two ethylene/jasmonic acid-regulated transcription factors, RhEFR005 and RhCCCH12, that bind to the promoter region of PATHOGENESIS-RELATED 10.1 (RhPR10.1) and promote its transcription, leading to decreased susceptibility to B. cinerea. The RhEFR005/RhCCCH12-RhPR10.1 module regulated cytokinin content in rose, and the susceptibility of RhEFR005-, RhCCCH12-, and RhPR10.1-silenced rose petals can be rescued by exogenous CK. In summary, our results reveal that the RhERF005/RhCCCH12-RhPR10.1 module regulates the CK-induced defense response of rose to B. cinerea.


Assuntos
Citocininas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citocininas/metabolismo , Botrytis , Doenças das Plantas/microbiologia
14.
BMC Cancer ; 24(1): 257, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395838

RESUMO

BACKGROUND: CCRT is presently the standard treatment for LA-NSCLC. RP is one of the main obstacles to the completion of thoracic radiation therapy, resulting in limited survival benefits in NSCLC patients. This research aims to explore the role of Endostar in the occurrence of grade≥2 RP and clinical curative effect in LA-NSCLC patients. METHODS: This study retrospectively analyzed 122 patients with stage III NSCLC who received CCRT from December 2008 to December 2017, or Endostar intravenous drip concurrently with chemoradiotherapy (Endostar + CCRT group). Standard toxicity of the pneumonitis endpoint was also collected by CTCAE V5.0. We further summarized other available studies on the role of Endostar in the prognosis of NSCLC patients and the incidence of RP. RESULTS: There were 76 cases in the CCRT group and 46 cases in the CCRT+ Endostar group. In the CCRT+ Endostar group, the occurrence of grade ≥2 RP in patients with V20Gy ≥25% was significantly higher than that in patients with V20Gy < 25% (p = 0.001). In the cohorts with V20Gy < 25%, 0 cases of 29 patients treated with Endostar developed grade ≥2 RP was lower than in the CCRT group (p = 0.026). The re-analysis of data from other available studies indicated that Endostar plus CCRT could be more efficient and safely in the occurrence of grade≥2 RP with LA-NSCLC. CONCLUSIONS: When receiving CCRT for LA-NSCLC patients, simultaneous combination of Endostar is recommended to enhance clinical benefit and reduce pulmonary toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Proteínas Recombinantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Pneumonia/induzido quimicamente , Pneumonia/epidemiologia , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia
15.
FASEB J ; 37(4): e22857, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906292

RESUMO

Adipogenesis is a finely controlled process and its dysfunction may contribute to metabolic disorders such as obesity. Metastasis suppressor 1 (MTSS1) is a player in tumorigenesis and metastasis of various types of cancers. To date, it is not known whether and how MTSS1 plays a role in adipocyte differentiation. In the current study, we found that MTSS1 was upregulated during adipogenic differentiation of established mesenchymal cell lines and primary cultured bone marrow stromal cells. Gain-of-function and loss-of-function experiments uncovered that MTSS1 facilitated adipocyte differentiation from mesenchymal progenitor cells. Mechanistic explorations revealed that MTSS1 bound and interacted with FYN, a member of Src family of tyrosine kinases (SFKs), and protein tyrosine phosphatase receptor-δ (PTPRD). We demonstrated that PTPRD was capable of inducing the differentiation of adipocytes. Overexpression of PTPRD attenuated the impaired adipogenesis induced by the siRNA targeting MTSS1. Both MTSS1 and PTPRD activated SFKs by suppressing the phosphorylation of SFKs at Tyr530 and inducing the phosphorylation of FYN at Tyr419. Further investigation showed that MTSS1 and PTPRD were able to activate FYN. Collectively, our study has for the first time unraveled that MTSS1 plays a role in adipocyte differentiation in vitro through interacting with PTPRD and thereby activating SFKs such as FYN tyrosine kinase.


Assuntos
Adipogenia , Proteínas dos Microfilamentos , Proteínas de Neoplasias , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Humanos , Diferenciação Celular , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Fosforilação , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
16.
Neurochem Res ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002091

RESUMO

Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.

17.
PLoS Biol ; 19(4): e3001190, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844686

RESUMO

Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.


Assuntos
Hemípteros/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oryza/parasitologia , Peroxirredoxinas/fisiologia , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Alelos , Animais , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes de Insetos/efeitos dos fármacos , Genes Modificadores/efeitos dos fármacos , Genes Modificadores/fisiologia , Estudos de Associação Genética , Aptidão Genética/efeitos dos fármacos , Hemípteros/fisiologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Oryza/efeitos dos fármacos , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
18.
J Org Chem ; 89(10): 7065-7075, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38666304

RESUMO

There are several challenging problems such as the usage of combustible and hazardous hydrogen sources and severe environmental pollution in the conventional reduction of aldehydes/ketones to alcohols. We report here a practical, safe, and green electrochemical reduction, which solves these problems to a large extent. Through an undivided cell, Zn(+) and Sn(-) as the electrode, tetrabutylammonium chloride (TBAC) as the electrolyte, water as the solvent and hydrogen source, a wide range of aldehydes and ketones are converted into the corresponding alcohols in mild conditions. Furthermore, the electrolytes and water can be recycled, and reductive deuteration can be achieved by simply using D2O as the solvent. Finally, the reduction can be smoothly scaled up to a kilogram level.

19.
J Org Chem ; 89(11): 8262-8266, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38741072

RESUMO

A convenient method for the synthesis of perdeuterated alkyl amides/amines is disclosed. Perdeuterated acetyl amides can be achieved by a hydrogen-deuterium (H/D) exchange protocol with Pt/C as a catalyst and D2O as a deuterium source under mild conditions. After removal or reduction of the acetyl group, this protocol can provide perdeuterated primary, secondary, and tertiary amines, which are difficult to achieve via other methods.

20.
Eur J Clin Microbiol Infect Dis ; 43(5): 875-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443737

RESUMO

PURPOSE: Post-neurosurgical intracranial infection caused by carbapenem-resistant gram-negative bacteria (CRGNB) is a life-threatening complication. This study aimed to assess the current practices and clinical outcomes of intravenous (IV) combined with intraventricular (IVT)/intrathecal (ITH) polymyxin B in treating CRGNB intracranial infection. METHODS: A retrospective study was conducted on patients with post-neurosurgical intracranial infection due to CRGNB from January 2013 to December 2020. Clinical characteristics and treatment outcomes were collected and described. Kaplan-Meier survival and multivariate logistic regression analyses were performed. RESULTS: The study included 114 patients, of which 72 received systemic antimicrobial therapy combined with IVT/ITH polymyxin B, and 42 received IV administration alone. Most infections were caused by carbapenem-resistant Acinetobacter baumannii (CRAB, 63.2%), followed by carbapenem-resistant Klebsiella pneumoniae (CRKP, 31.6%). Compared with the IV group, the IVT/ITH group had a higher cerebrospinal fluid (CSF) sterilization rate in 7 days (p < 0.001) and lower 30-day mortality (p = 0.032). In the IVT/ITH group, patients with CRKP infection had a higher initial fever (p = 0.014), higher incidence of bloodstream infection (p = 0.040), lower CSF sterilization in 7 days (p < 0.001), and higher 30-day mortality (p = 0.005) than those with CRAB infection. Multivariate logistic regression analysis revealed that the duration of IVT/ITH polymyxin B (p = 0.021) was independently associated with 30-day mortality. CONCLUSIONS: Intravenous combined with IVT/ITH polymyxin B increased CSF microbiological eradication and improved clinical outcomes. CRKP intracranial infections may lead to more difficult treatment and thus warrant attention and further optimized treatment.


Assuntos
Antibacterianos , Carbapenêmicos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Polimixina B , Humanos , Polimixina B/uso terapêutico , Polimixina B/administração & dosagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Bactérias Gram-Negativas/efeitos dos fármacos , Idoso , Adulto , Injeções Espinhais , Procedimentos Neurocirúrgicos/efeitos adversos , Resultado do Tratamento , Injeções Intraventriculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA