RESUMO
Rice is a major dietary source of inorganic arsenic (iAs), a highly toxic arsenical that accumulates in rice and poses health risks to rice-based populations. However, the availability of detection methods for iAs in rice grains is limited. In this study, we developed a novel approach utilizing a natural bacterial biosensor, Escherichia coli AW3110 (pBB-ArarsR-mCherry), in conjunction with amylase hydrolysis for efficient extraction, enabling high-throughput and quantitative detection of iAs in rice grains. The biosensor exhibits high specificity for arsenic and distinguishes between arsenite [As(III)] and arsenate [As(V)] by modulating the concentration of PO43- in the detection system. We determined the iAs concentrations in 19 rice grain samples with varying total As concentrations and compared our method with the standard technique of microwave digestion coupled with HPLC-ICP-MS. Both methods exhibited comparable results, without no significant bias in the concentrations of As(III) and As(V). The whole-cell biosensor demonstrated excellent reproducibility and a high signal-to-noise ratio, achieving a limit of detection of 16 µg kg-1 [As(III)] and 29 µg kg-1 [As(V)]. These values are considerably lower than the maximum allowable level (100 µg kg-1) for infant rice supplements established by the European Union. Our straightforward sensing strategy presents a promising tool for detecting iAs in other food samples.
Assuntos
Arsênio , Arsenicais , Oryza , Humanos , Lactente , Arsênio/análise , Contaminação de Alimentos/análise , Reprodutibilidade dos Testes , Arsenicais/análiseRESUMO
BACKGROUND: Global distributions and trends of the risk-attributable burdens of chronic obstructive pulmonary disease (COPD) have rarely been systematically explored. To guide the formulation of targeted and accurate strategies for the management of COPD, we analyzed COPD burdens attributable to known risk factors. METHODS: Using detailed COPD data from the Global Burden of Disease study 2019, we analyzed disability-adjusted life years (DALYs), years lived with disability (YLDs), years of life lost (YLLs), and deaths attributable to each risk factor from 1990 to 2019. Additionally, we calculated estimated annual percentage changes (EAPCs) during the study period. The population attributable fraction (PAF) and summary exposure value (SEV) of each risk factor are also presented. RESULTS: From 1990 to 2019, the age-standardized DALY and death rates of COPD attributable to smoking and household air pollution, occupational particles, secondhand smoke, and low temperature presented consistently declining trends in almost all socio-demographic index (SDI) regions. However, the decline in YLD was not as dramatic as that of the death rate. In contrast, the COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure showed undesirable increasing trends in the low- and low-middle-SDI regions. In addition, the age-standardized DALY and death rates attributable to each risk factor except household air pollution and low temperature were the highest in the low-middle-SDI region. In 2019, the COPD burden attributable to smoking ambient particulate matter, ozone, occupational particles, low and high temperature was obviously greater in males than in females. Meanwhile, the most important risk factors for female varied across regions (low- and low-middle-SDI regions: household air pollution; middle-SDI region: ambient particles; high-middle- and high-SDI region: smoking). CONCLUSIONS: Increasing trends of COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure in the low-middle- and low-SDI regions call for an urgent need to implement specific and effective measures. Moreover, considering the gender differences in COPD burdens attributable to some risk factors such as ambient particulate matter and ozone with similar SEV, further research on biological differences between sexes in COPD and relevant policy-making of disease prevention are required.
Assuntos
Ozônio , Doença Pulmonar Obstrutiva Crônica , Feminino , Carga Global da Doença , Saúde Global , Humanos , Masculino , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Fatores de RiscoRESUMO
RATIONALE: Use of ACEIs (angiotensin-converting enzyme inhibitors) and ARBs (angiotensin II receptor blockers) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. OBJECTIVE: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in patients with hypertension and hospitalized due to COVID-19. METHODS AND RESULTS: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [interquartile range, 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [interquartile range 57-69]; 53.5% men), who were admitted to 9 hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted hazard ratio, 0.42 [95% CI, 0.19-0.92]; P=0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted hazard ratio, 0.37 [95% CI, 0.15-0.89]; P=0.03). Further subgroup propensity score-matched analysis indicated that, compared with use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted hazard ratio, 0.30 [95% CI, 0.12-0.70]; P=0.01) in patients with COVID-19 and coexisting hypertension. CONCLUSIONS: Among hospitalized patients with COVID-19 and coexisting hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB nonusers. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk.
Assuntos
Antagonistas de Receptores de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Infecções por Coronavirus/epidemiologia , Mortalidade Hospitalar , Hipertensão/epidemiologia , Pneumonia Viral/epidemiologia , Idoso , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19 , Infecções por Coronavirus/complicações , Feminino , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Pacientes Internados/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicaçõesRESUMO
OBJECTIVE: The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019. DESIGN: All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review. SETTING: All data sourced from the GBD Study 2019. PARTICIPANTS: All age groups for both sexes. RESULTS: The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe. CONCLUSIONS: The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
RESUMO
We report a photodynamic therapy driven by electrochemiluminescence (ECL). The luminescence generated by Ru(bpy)32+ and co-reactant tripropylamine (TPA) pair acts as both optical readout for ECL imaging, and light source for the excitation of photosensitizer to produce reactive oxygen species (ROS) in photodynamic therapy (PDT) system. The ECL-driven PDT (ECL-PDT) relies on the effective energy transfer from ECL emission to photosensitizer chlorin e6 (Ce6), which sensitizes the surrounding O2 into ROS. The dynamic process of gradual morphological changes, the variation of cell-matrix adhesions, as well as the increase of cell membrane permeability in the process of ECL-PDT were monitored under ECL microscopy (ECLM) with good spatiotemporal resolution. Combining real-time imaging with ECL-PDT, this new strategy provides not only new insights into dynamic cellular processes, but also promising potential of ECL in clinical applications.
Assuntos
Fotoquimioterapia , Transferência de Energia , Luminescência , Fármacos Fotossensibilizantes/farmacologiaRESUMO
Electrogenerated chemiluminescence microscopy (ECLM) provides a real-time imaging approach to visualize the surface-dependent catalytic activity of nanocatalysts, which helps to rationalize the design of catalysts. In this study, we first propose super-resolution ECLM that could measure the facet- and site-specific activities of a single nanoparticle with nanometer resolution. The stochastic nature of the ECL emission makes the generation of photons obey Poisson statistics, which fits the requirement of super-resolution radial fluctuation (SRRF). By processing an SRRF algorithm, the spatial resolution of ECL images achieved ca. 100 nm, providing more abundant details on electrocatalytic reactivities at the subparticle level. Beyond conventional wide-field ECL imaging, super-resolution ECLM provided the spatial distribution of catalytic activities at a Au nanorod and nanoplate with scales of a few hundred nanometers. It helped uncover the facet- and defect-dependent surface activity, as well as the dynamic fluctuation of reactivity patterns on single nanoparticles. The super-resolution ECLM provides high spatiotemporal resolution, which shows great potential in the field of catalysis, biological imaging, and single-entity analysis.
RESUMO
Inhibition of apoptosis signal-regulating kinase 1 (ASK1) activation has emerged as a promising target for the treatment of nonalcoholic steatohepatitis (NASH). Multiple forms of posttranslational modifications determine the activity of ASK1. In addition to phosphorylation, recent studies revealed that ubiquitination is essential for ASK1 activation. However, the endogenous factor that regulates ASK1 ubiquitination and activation remains poorly defined. In this study, we identified the E3 ligase Skp1-Cul1-F-box (SCF) protein F-box/WD repeat-containing protein 5 (FBXW5) as a key endogenous activator of ASK1 ubiquitination. FBXW5 is the central component of the SCF complex (SCFFbxw5 ) that directly interacts with and ubiquitinates ASK1 in hepatocytes during NASH development. An in vivo study showed that hepatocyte-specific overexpression of FBXW5 exacerbated diet-induced systemic and hepatic metabolic disorders, as well as the activation of ASK1-related mitogen-activated protein kinase (MAPK) signaling in the liver. Conversely, hepatocyte-specific deletion of FBXW5 significantly prevented the progression of these abnormalities. Mechanically, FBXW5 facilitated the addition of Lys63-linked ubiquitin to ASK1 and thus exacerbated ASK1-c-Jun N-terminal kinase/p38 MAPK signaling, inflammation, and lipid accumulation. Furthermore, we demonstrated that the N-terminus (S1) and C-terminus (S3) of FBXW5 respectively and competitively ablate the function of FBXW5 on ASK1 activation and served as effective inhibitors of NASH progression. Conclusion: This evidence strongly suggests that SCFFbxw5 is an important activator of ASK1 ubiquitination in the context of NASH. The development of FBXW5(S1) or FBXW5(S3)-mimicking drugs and screening of small-molecular inhibitors specifically abrogating ASK1 ubiquitination-dependent activation are viable approaches for NASH treatment.
Assuntos
Proteínas F-Box/fisiologia , MAP Quinase Quinase Quinase 5/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Ubiquitinação , Animais , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Repetições WD40 , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologiaRESUMO
The Nobel Prize in Chemistry for 2022 was awarded to the pioneers of Lego-like 'click chemistry': combinatorial chemistry with remarkable modularity and diversity. It has been applied to a wide variety of biological systems, from microorganisms to plants and animals, including humans. Although click chemistry is a powerful chemical biology tool, comparatively few studies have examined its potential in plant science. Here, we review click chemistry reactions and their applications in plant systems, highlighting the activity-based probes and metabolic labeling strategies combined with bioorthogonal click chemistry to visualize plant biological processes. These applications offer new opportunities to explore and understand the underlying molecular mechanisms regulating plant composition, growth, metabolism, defense, and immune responses.
Assuntos
Química Click , Plantas , Plantas/químicaRESUMO
This study aims to address the gap in understanding of the impact of the sample quantity, traceability range, and shelf life on the accuracy of mung bean origin traceability models based on near-infrared spectroscopy. Mung beans from Baicheng City, Jilin Province, Dorbod Mongol Autonomous, Tailai County, Heilongjiang Province, and Sishui County, Shandong Province, China, were used. Through near-infrared spectral acquisition (12,000-4000 cm-1) and preprocessing (Standardization, Savitzky-Golay, Standard Normal Variate, and Multiplicative Scatter Correction) of the mung bean samples, the total cumulative variance contribution rate of the first three principal components was determined to be 98.16% by using principal component analysis, and the overall discriminatory correctness of its four origins combined with the K-nearest neighbor method was 98.67%. We further investigated how varying sample quantities, traceability ranges, and shelf lives influenced the discrimination accuracy. Our results indicated a 4% increase in the overall correct discrimination rate. Specifically, larger traceability ranges (Tailai-Sishui) improved the accuracy by over 2%, and multiple shelf lives (90-180-270-360 d) enhanced the accuracy by 7.85%. These findings underscore the critical role of sample quantity and diversity in traceability studies, suggesting that broader traceability ranges and comprehensive sample collections across different shelf lives can significantly improve the accuracy of origin discrimination models.
RESUMO
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 µg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 µg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (â¢OH and â¢O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Assuntos
Escherichia coli , Transferência Genética Horizontal , Plasmídeos , Espécies Reativas de Oxigênio , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Resistência Microbiana a Medicamentos/genética , Poliestirenos/química , Luz Solar , Farmacorresistência Bacteriana/genética , Oxirredutases/genética , Oxirredutases/metabolismoRESUMO
Arsenic (As) constitutes a substantial threat to global ecosystems and public health. An accurate quantification of inorganic arsenite (As(III)) in rice grains is crucial for ensuring food safety and human well-being. Herein, we constructed an electrochemiluminescence (ECL) biosensor utilizing aggregation-induced emission (AIE) active Pdots for the sensitive detection of As(III) in rice. We synthesized tetraphenylethylene-based AIE-active Pdots, exhibiting stable and highly efficient ECL emission in their aggregated states. Owing to the overlap of spectra, we employed an electrochemiluminescence resonance energy transfer (ECL-RET) system, with the Pdots as the donor and black hole quencher (BHQ) as the acceptor. Upon the introduction of As(III), the conformational changes of As(III)-specific aptamer could trigger the detachment of BHQ-labeled DNA aptamer from the electrode surface, leading to the recovery of the ECL signal. The target-induced "signal-on" bioassay enabled the sensitive and specific detection of As(III) with a linear range of 10 pM to 500 nM, with an ultralow limit of detection (LOD) of 5.8 pM/0.4 ppt. These values significantly surpass those of existing sensors designed for As(III) quantification in rice. Furthermore, by employing amylase hydrolysis for efficient extraction, we successfully applied our sensor to measure As(III) in actual rice samples sourced from diverse regions of China. The results obtained using our sensor were in close agreement with those derived from the reference method of HPLC-ICP-MS. This study not only presents a sensitive and reliable method for detecting arsenite but also underscores its potential applications in enhancing food safety, agriculture practices, and environmental monitoring.
Assuntos
Arsenitos , Técnicas Biossensoriais , Oryza , Humanos , Ecossistema , Medições Luminescentes/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodosRESUMO
Pu-erh tea is a famous tea worldwide, and identification of the geographical origin of Pu-erh tea can not only protect manufacture's interests, but also boost consumers' confidence. However, tree age may also influence the fingerprints of Pu-erh tea. In order to study the effects of the geographical origin and tree age on the interactions of stable isotopes and multi-elements of Pu-erh tea, 53 Pu-erh tea leaves with three different age stages from three different areas in Yunnan were collected in 2023. The δ13C, δ15N values and 25 elements were determined and analyzed. The results showed that δ13C, δ15N, Mg, Mn, Fe, Cu, Zn, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu had significant differences among different geographical origins (p < 0.05). Mn content was significantly influenced by region and tree age interaction. Based on multi-way analysis of variance, principal component analysis and step-wised discriminant analysis, 24 parameters were found to be closely related to the geographical origin rather than tree age, and the geographical origin of Pu-erh tea can be 100.0% discriminated in cross-validation with six parameters (δ13C, δ15N, Mn, Mg, La, and Tb). The study could provide references for the establishment of a database for the traceability of Pu-erh tea, and even the identification of tea sample regions with different tree ages.
RESUMO
Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.
Assuntos
Fator 5 de Crescimento de Fibroblastos , Glutationa Peroxidase , Folículo Piloso , Via de Sinalização Wnt , Lã , Animais , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Ovinos , Lã/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Edição de Genes , Hidrocortisona/metabolismo , Proliferação de Células , Sistemas CRISPR-Cas/genéticaRESUMO
Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.
Assuntos
Sistemas CRISPR-Cas , Fator 5 de Crescimento de Fibroblastos , Miostatina , Animais , Miostatina/genética , Miostatina/metabolismo , Ovinos , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mutação , Técnicas de Inativação de Genes , Hiperplasia/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologiaRESUMO
Small floodgates in the river network area own some characteristics: considerable quantity, wide range and short adjustment time, and intercepts the one-dimensional constant flow of rivers, which induce a great impact on riverine water quality. In this study, a typical urban floodgate-controlled reach was selected, and analyzed through the monthly data of four pollutant indicators TN, TP, CODMn and NH3-N at six sampling sites S1-S6 in 2016-2018. The principal component analysis and correlation analysis showed that TP was a representative indicator and there was a positive correlation between various pollutants. The difference test and linear regression showed that the concentration of pollutants at different sampling points varied greatly, and the pollutant concentrations in the longitudinal direction of the river showed a cubic-linear regression. The cluster system and CCME WQI showed that the water quality in the urban floodgate-controlled reach is "marginal" state, and TN and NH3-N are severely exceeding the standard. The "cumulative changes" of the floodgate on the pollutant input to the environment appeared spatial heterogeneity.
RESUMO
Introduction: Toll-like receptor 4 (TLR4) identifies Gram-negative bacteria or their products and plays a crucial role in host defense against invading pathogens. In the intestine, TLR4 recognizes bacterial ligands and interacts with the immune system. Although TLR4 signaling is a vital component of the innate immune system, the influence of TLR4 overexpression on innate immune response and its impact on the composition of the intestinal microbiota is unknown. Methods: Here, we obtained macrophages from sheep peripheral blood to examine phagocytosis and clearance of Salmonella Typhimurium (S. Typhimurium) in macrophages. Meanwhile, we characterized the complex microbiota inhabiting the stools of TLR4 transgenic (TG) sheep and wild-type (WT) sheep using 16S ribosomal RNA (rRNA) deep sequencing. Results: The results showed that TLR4 overexpression promoted the secretion of more early cytokines by activating downstream signaling pathways after stimulation by S. Typhimurium. Furthermore, diversity analysis demonstrated TLR4 overexpression increased microbial community diversity and regulated the composition of intestinal microbiota. More importantly, TLR4 overexpression adjusted the gut microbiota composition and maintained intestinal health by reducing the ratio of Firmicutes/Bacteroidetes and inflammation and oxidative stress-producing bacteria (Ruminococcaceae, Christensenellaceae) and upregulating the abundance of Bacteroidetes population and short-chain fatty acid (SCFA)-producing bacteria, including Prevotellaceae. These dominant bacterial genera changed by TLR4 overexpression revealed a close correlation with the metabolic pathways of TG sheep. Discussion: Taken together, our findings suggested that TLR4 overexpression can counteract S. Typhimurium invasion as well as resist intestinal inflammation in sheep by regulating intestinal microbiota composition and enhancing anti-inflammatory metabolites.
RESUMO
Background: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, which poses huge disease burdens in China. A study was conducted to systematically analyze the recent prevalence trend of AF and age-related disparities in AF risk among the nationwide healthy check-up population. Method: We conducted a nationwide cross-sectional study involving 3,049,178 individuals ≥35 years from health check-up centers to explore the prevalence and trend of AF by age, sex, and region from 2012 to 2017. Additionally, we analyzed risk factors associated with AF among the overall population and different age groups via the Boruta algorithm, the LASSO regression, and the Logistic regression. Result: The age-, sex-. and regional-standardized prevalence of AF kept stable between 0.4%-0.45% among national physical examination individuals from 2012 to 2017. However, the prevalence of AF showed an undesirable upward trend in the 35-44-year age group (annual percentage changes (APC): 15.16 [95%CI: 6.42,24.62]). With increasing age, the risk of AF associated with the overweight or obesity gradually exceeds that associated with diabetes and hypertension. In addition to traditional leading risk factors such as age≥65 and coronary heart disease, elevated uric acid and impaired renal function were tightly correlated with AF in the population. Conclusion: The significant rise in the prevalence of AF in the 35-44 age group reminds us that in addition to the elderly (the high-risk group), younger people seem to be in more urgent need of attention. Age-related disparities in AF risk also exist. This updated information may provide references for the national prevention and control of AF.
RESUMO
Floodgate operation is one of the main forms of river regulation in the development and utilization of river basins. It changes the natural structure, flow process, and correlative environment of rivers. However, there is little analysis of the multiple impacts of small floodgate operation on the water environment in river networks and of the regulation patterns of urban floodgate infrastructure on pollution. In this paper, a one-dimensional hydrodynamic-water quality model, MIKE 11, was used, taking Wuxi's two main pollutant indicators-the permanganate index (CODMn) and ammonia nitrogen (NH3-N)-to simulate the water quality response of Wuxi's river network based on different design solutions of urban floodgate infrastructure. The results show that among the three design scenarios, the order of the decreasing amplitude of the CODMn and NH3-N concentrations was as follows: 1.4 m design solution scenario > 2.1 m design solution scenario > 0.7 m design solution scenario. Meanwhile, under the 1.4 m scenario, the maximum decrease in the CODMn concentration reached 37.57%, and the maximum decrease in the NH3-N concentration reached 206%. In the entire river network system, the improvement in the water quality in the downstream area was significantly better than that in the upstream area. In addition, under the three scenarios of floodgate operation, the changes in pollutant concentrations during the flood season (June-September) were significantly lower than those during the dry season (October-February) and the flat water season (March-May). The research results can provide theoretical support and new ideas for future research on the ecological operation of small floodgates and related research on the water environment effect.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , China , Cidades , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Poluição da Água/análise , Poluição da Água/prevenção & controle , Qualidade da ÁguaRESUMO
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
RESUMO
Herein, the authors synthesis an efficient and easily recycled CuCo/C catalyst through one-step carbonization of Cu@Co-MOF-71 (Abbreviated as Cu@Co-MOF in this work) precursor. The prepared CuCo/C has a high degradation efficiency of 90% for ciprofloxacin (CIP) by activating PMS in a wide value of pH 3-9 within 30 min. After pyrolysis, the carbon matrix as a dispersant can promote the highly uniform distribution of active metals. Additionally, the CIP removal efficiency was 85% after four cycles and the catalyst was easily separated from the solution by using magnets, showing the good stability and reusability. To further study the superiority of CuCo/C activated PMS in degrading CIP, the factors such as pH, the dosage of PMS and catalyst, temperature, inorganic ions and pollutant (CIP) concentration were investigated. Furthermore, the Liquid chromatography-mass spectrometry (LC-MS) was utilized to analyze the intermediate products and possible degradation pathways of CIP. Typically, the quenching experiments and electron paramagnetic resonance (EPR) technology were investigated to confirm the main reaction species including SO4âª-, OH⪠and O2âª- radicals as well as nonradical (1O2). This work put forward a simple method for synthesis of metal-organic framework (MOF) derived catalysts and its application in treatment of organic pollutants.