Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
2.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31564558

RESUMO

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismo
3.
Blood ; 137(10): 1353-1364, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32871584

RESUMO

T-cell/histiocyte-rich large B-cell lymphoma (TCRLBCL) is an aggressive variant of diffuse large B-cell lymphoma (DLBCL) characterized by rare malignant B cells within a robust but ineffective immune cell infiltrate. The mechanistic basis of immune escape in TCRLBCL is poorly defined and not targeted therapeutically. We performed a genetic and quantitative spatial analysis of the PD-1/PD-L1 pathway in a multi-institutional cohort of TCRLBCLs and found that malignant B cells harbored PD-L1/PD-L2 copy gain or amplification in 64% of cases, which was associated with increased PD-L1 expression (P = .0111). By directed and unsupervised spatial analyses of multiparametric cell phenotypic data within the tumor microenvironment, we found that TCRLBCL is characterized by tumor-immune "neighborhoods" in which malignant B cells are surrounded by exceptionally high numbers of PD-L1-expressing TAMs and PD-1+ T cells. Furthermore, unbiased clustering of spatially resolved immune signatures distinguished TCRLBCL from related subtypes of B-cell lymphoma, including classic Hodgkin lymphoma (cHL) and DLBCL-NOS. Finally, we observed clinical responses to PD-1 blockade in 3 of 5 patients with relapsed/refractory TCRLBCL who were enrolled in clinical trials for refractory hematologic malignancies (NCT03316573; NCT01953692), including 2 complete responses and 1 partial response. Taken together, these data implicate PD-1 signaling as an immune escape pathway in TCRLBCL and also support the potential utility of spatially resolved immune signatures to aid the diagnostic classification and immunotherapeutic prioritization of diverse tumor types.


Assuntos
Histiócitos/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Evasão Tumoral , Antígeno B7-H1/análise , Antígeno B7-H1/imunologia , Histiócitos/patologia , Humanos , Linfoma Difuso de Grandes Células B/patologia , Receptor de Morte Celular Programada 1/análise , Linfócitos T/patologia
4.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37874974

RESUMO

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

5.
Bioorg Chem ; 130: 106236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371817

RESUMO

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or ß-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant. Analyses of the results for the Series I and II derivatives showed that minor structure modifications to their functional groups and especially the incorporation of 1-aminopiperidine or 4-aminothiomorpholine 1,1-dioxide motifs can profoundly affect their bias toward G protein or ß-arrestin signaling, and that their binding affinity and functional activity can be disassociated. Docking and molecular dynamics simulations revealed that the binding modes of Series I and II antagonists differed primarily in that Series I antagonists formed an additional hydrogen bond with the receptor, whereas those in Series II formed a water bridge.


Assuntos
Antagonistas de Receptores de Canabinoides , Proteínas de Ligação ao GTP , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Rimonabanto , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Canabinoides/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003291

RESUMO

Adipogenesis has emerged as a new therapeutic target for regulating metabolism and achieving anti-inflammatory and anti-atherosclerotic effects via the release of adiponectin. However, at present, the effects and mechanism of action of dipeptidyl peptidase 4 (DPP4) stimulation on adiponectin production and adipogenesis have not been clarified. Here, we investigated the effects of DPP4 stimulation with monocyte chemoattractant protein-1 (MCP-1) on platelet-derived growth factor receptor alpha (PDGFRα) expression in adipose tissue and blood adiponectin levels. Stromal vascular fractions (SVFs) purified from human subcutaneous adipose tissue and inguinal adipose tissue of obese and diabetic (Leprdb/db) mice were treated with 50 ng of MCP-1 and plasma from control (Lepr+/+) mice supplemented with 10 ng or 50 ng of MCP-1. Treatment of SVFs from human subcutaneous adipose tissues with 50 ng of MCP-1 significantly increased AdipoQ, DPP4, peroxisome proliferator-activated receptor gamma (PPARγ), fatty-acid-binding protein (FABP4), and SERBF1 mRNA expression. MCP-1-supplemented plasma increased adiponectin, CCAAT-Enhancer-binding protein alpha (C/EBPα), DPP4, IL-33, and PDGFRα mRNA expression and adiponectin and DPP4 protein expression, while decreasing the expression of IL-10 mRNA in SVFs compared with the levels in the plasma treatment group. MCP-1-supplemented plasma was shown to increase PPARγ, PPARγ2, adiponectin, DPP4, and FABP4 and decrease IL-10 mRNA expression in PDGFRα cells from adipose tissue. Meanwhile, MCP-1-supplemented plasma increased MCP-1, PDGFRα, TNFα, adiponectin, and IL-1ß and decreased IL-10 and FOXP3 mRNA expression in DPP4 cells. Moreover, the injection of MCP-1-supplemented plasma into adipose tissue increased the proportion of DPP4+ cells among PDGFRα+ cells from adipose tissue and plasma adiponectin levels of Leprdb/db mice compared with the levels in the plasma injection group. Our results demonstrate that DPP4+ cells are important adipose progenitor cells. Stimulation of DPP4 with MCP-1 increases adipogenesis-related gene expression and the population of DPP4+ cells among PDGFRα+ cells in SVFs and blood adiponectin levels. DPP4 stimulation could be a novel therapy to increase local adipogenesis and systemic adiponectin levels.


Assuntos
Adipogenia , Adiponectina , Animais , Humanos , Camundongos , Adipogenia/genética , Adiponectina/metabolismo , Dipeptidil Peptidase 4/genética , Expressão Gênica , Interleucina-10/genética , PPAR gama/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , RNA Mensageiro/metabolismo , Células Estromais/metabolismo
7.
Environ Res ; 211: 112989, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231455

RESUMO

Perchlorate, nitrate, and thiocyanate, namely thyroid disrupting chemicals (TDCs), are found ubiquitously in the environment, leading to broad human exposure and primary uptake through the food web and drinking water. TDCs are all competitive inhibitors of thyroid iodide uptake activity, but limited studies have assessed the cumulative risk of dietary exposure to multiple TDCs. Thus, in this study, we analyzed the individual exposure risk from 310 food samples in 11 categories, and also assessed the cumulative health risks from TDCs for the Taiwanese population using a perchlorate equivalent concentration (PEC) approach. Consequently, this study not only demonstrated the non-carcinogenic health risks from individual exposure but also highlighted that the cumulative exposure to these TDCs may adversely affect human thyroid functioning. Vegetables, livestock, fruits, and dairy products are the most susceptible to PEC exposure. We highlighted nitrate as the main contributor to PEC exposure. Finally, controlling the overall TDC concentrations from vegetables, livestock, fruits, and dairy products is emphasized in this study. This is the first study to conduct a cumulative risk assessment of dietary exposure to TDCs using the PEC approach for the Taiwanese population through probabilistic and sensitivity analyses.


Assuntos
Percloratos , Tiocianatos , Humanos , Nitratos/análise , Nitratos/toxicidade , Óxidos de Nitrogênio , Percloratos/toxicidade , Medição de Risco
8.
Blood ; 134(23): 2059-2069, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31697809

RESUMO

Classic Hodgkin lymphoma (cHL) is a tumor composed of rare, atypical, germinal center-derived B cells (Hodgkin Reed-Sternberg [HRS] cells) embedded within a robust but ineffective inflammatory milieu. The cHL tumor microenvironment (TME) is compartmentalized into "niches" rich in programmed cell death-1 ligand (PD-L1)-positive HRS cells and tumor-associated macrophages (TAMs), which associate with PD-1-positive T cells to suppress antitumor immunity via PD-L1/PD-1 signaling. Despite the exquisite sensitivity of cHL to PD-1 checkpoint blockade, most patients eventually relapse and need therapeutic alternatives. Using multiplex immunofluorescence microscopy with digital image analysis, we found that cHL is highly enriched for non-T-regulatory, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)-positive T cells (compared with reactive lymphoid tissues) that outnumber PD-1-positive and lymphocyte-activating gene-3 (LAG-3)-positive T cells. In addition, T cells touching HRS cells are more frequently positive for CTLA-4 than for PD-1 or LAG-3. We further found that HRS cells, and a subset of TAMs, are positive for the CTLA-4 ligand CD86 and that the fractions of T cells and TAMs that are CTLA-4-positive and CD86-positive, respectively, are greater within a 75 µm HRS cell niche relative to areas outside this region (CTLA-4, 38% vs 18% [P = .0001]; CD86, 38% vs 24% [P = .0007]). Importantly, CTLA-4-positive cells are present, and focally contact HRS cells, in recurrent cHL tumors following a variety of therapies, including PD-1 blockade. These results implicate CTLA-4:CD86 interactions as a component of the immunologically privileged niche surrounding HRS cells and raise the possibility that patients with cHL refractory to PD-1 blockade may benefit from CTLA-4 blockade.


Assuntos
Antígeno CTLA-4/metabolismo , Doença de Hodgkin/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral , Antígeno B7-H1/metabolismo , Feminino , Doença de Hodgkin/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patologia , Linfócitos T/patologia
9.
Blood ; 134(26): 2369-2382, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697821

RESUMO

Primary mediastinal large B-cell lymphomas (PMBLs) are aggressive tumors that typically present as large mediastinal masses in young women. PMBLs share clinical, transcriptional, and molecular features with classical Hodgkin lymphoma (cHL), including constitutive activation of nuclear factor κB (NF-κB), JAK/STAT signaling, and programmed cell death protein 1 (PD-1)-mediated immune evasion. The demonstrated efficacy of PD-1 blockade in relapsed/refractory PMBLs led to recent approval by the US Food and Drug Administration and underscored the importance of characterizing targetable genetic vulnerabilities in this disease. Here, we report a comprehensive analysis of recurrent genetic alterations -somatic mutations, somatic copy number alterations, and structural variants-in a cohort of 37 newly diagnosed PMBLs. We identified a median of 9 genetic drivers per PMBL, including known and newly identified components of the JAK/STAT and NF-κB signaling pathways and frequent B2M alterations that limit major histocompatibility complex class I expression, as in cHL. PMBL also exhibited frequent, newly identified driver mutations in ZNF217 and an additional epigenetic modifier, EZH2. The majority of these alterations were clonal, which supports their role as early drivers. In PMBL, we identified several previously uncharacterized molecular features that may increase sensitivity to PD-1 blockade, including high tumor mutational burden, microsatellite instability, and an apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutational signature. The shared genetic features between PMBL and cHL provide a framework for analyzing the mechanism of action of PD-1 blockade in these related lymphoid malignancies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/patologia , Neoplasias do Mediastino/patologia , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Genômica , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Masculino , Neoplasias do Mediastino/tratamento farmacológico , Neoplasias do Mediastino/genética , Prognóstico , Transativadores/genética
10.
Angew Chem Int Ed Engl ; 60(48): 25404-25410, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550627

RESUMO

Heteroatom doped atomically dispersed Fe1 -NC catalysts have been found to show excellent activity toward oxygen reduction reaction (ORR). However, the origin of the enhanced activity is still controversial because the structure-function relationship governing the enhancement remains elusive. Herein, sulfur(S)-doped Fe1 -NC catalyst was obtained as a model, which displays a superior activity for ORR towards the traditional Fe-NC materials. 57 Fe Mössbauer spectroscopy and electron paramagnetic resonance spectroscopy revealed that incorporation of S in the second coordination sphere of Fe1 -NC can induce the transition of spin polarization configuration. Operando 57 Fe Mössbauer spectra definitively identified the low spin single-Fe3+ -atom of C-FeN4 -S moiety as the active site for ORR. Moreover, DFT calculations unveiled that lower spin state of the Fe center after the S doping promotes OH* desorption process. This work elucidates the underlying mechanisms towards S doping for enhancing ORR activity, and paves a way to investigate the function of broader heteroatom doped Fe1 -NC catalysts to offer a general guideline for spin-state-determined ORR.

11.
Arch Toxicol ; 94(9): 2925-2938, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32529281

RESUMO

Toxicity from drugs has become an important cause of acute liver failure. Acetaminophen, a commonly used analgesic, can cause severe acute liver injury that can worsen into acute liver failure. Autophagy, a protective cell programme, has been reported to have protective effects in a variety of diseases such as cancer, immune diseases, neurodegenerative diseases, and inflammatory diseases. In this review, we describe how an excess of acetaminophen causes liver injury step by step, from the formation of the initial protein adduct to the final hepatocyte necrosis, as well as the induction of autophagy and its beneficial effects on diseases. Emphasis is placed on the potential effect of autophagy on improving the damage of acetaminophen to hepatocytes. Finally, we are committed to providing insights into the treatment of acute liver failure through the mechanism of acetaminophen induced liver injury, the mechanism of autophagy, and the link between autophagy and liver injury.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Autofagia/fisiologia , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos , Humanos , Fígado
12.
Lipids Health Dis ; 19(1): 72, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32284046

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo
13.
J Transl Med ; 17(1): 304, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488203

RESUMO

BACKGROUND: Infection by antibiotic-resistant microorganisms is common in intensive care units and has become a global problem. Here, we determined the effect of aryl hydrocarbon receptor (AhR) stimulation on antibiotics-induced systemic defense impairment and its mechanisms. METHODS: C57BL/6 wild-type (WT) mice received combined antibiotics with or without Ahr ligands (tryptophan and indole), or dead Lactobacillus plantarum supplementation. The defense mechanisms against Pseudomonas aeruginosa infection in the lung were examined. RESULTS: Antibiotic treatments decreased the phagocytic activity, physiological activity, and the peroxynitrite production of alveolar macrophage (AMs). It also enhanced P. aeruginosa pneumonia-induced bacterial counts in the lung. Tryptophan and dead L. plantarum supplementation reversed antibiotic-induced intracellular adhesion molecule (ICAM) as well as IL-6 expression, and increased P. aeruginosa pneumonia-induced bacterial counts in the lung and increased phagocytic activity and peroxynitrite production of AMs. Moreover, these treatments reversed the antibiotics-induced reduction of Ahr expression, antibacterial proteins, reactive oxygen species (ROS) production, and NF-κB DNA binding activity of the intestinal mucosa and plasma IL-6 levels. P. aeruginosa counts increased and phagocytic activity of AMs and myeloperoxidase (MPO) activity decreased in intestinal IKKß depleted mice. Antibiotics, antibiotic with tryptophan feeding, or antibiotic with dead L. plantarum feeding treatments did not change the phagocytic activity and peroxynitrite production of AMs, plasma IL-6 levels, and the expression of Ahr of intestine in intestinal IKKß depleted mice. CONCLUSION: Antibiotic treatment impairs lung immune defenses by decreasing Ahr expression in the intestine and peroyxnitrite production of the AMs. Ahr ligands reverses antibiotic-induced lung defense against bacterial infection through intestinal ROS production and NF-κB activation. The gut is critical in maintaining lung defense mechanism through the intestinal IKKß pathways.


Assuntos
Quinase I-kappa B/metabolismo , Intestinos/fisiologia , Pulmão/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Administração Oral , Animais , Antibacterianos/farmacologia , Contagem de Colônia Microbiana , Indóis/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Ligantes , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ácido Peroxinitroso/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Triptofano/administração & dosagem , Triptofano/farmacologia
14.
J Biol Chem ; 292(15): 6303-6311, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223357

RESUMO

mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.


Assuntos
Complexos Multiproteicos/metabolismo , Ácidos Fosfatídicos/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Ácido Oleico/farmacologia , Ácidos Fosfatídicos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina-Treonina Quinases TOR/genética
15.
J Transl Med ; 16(1): 225, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103798

RESUMO

BACKGROUND: Widespread use of antibiotics in the intensive care unit is a potential cause of the emergence of hospital-acquired pneumonia. This study determined whether Lactobacillus salivarius feeding could reverse antibiotic-induced lung defense impairment in a ventilator model. METHODS: C57BL/6 wild-type (WT) mice received mechanical ventilation for 3 h after intramuscular antibiotic treatment for 6 days. Treatment with dead Lactobacillus salivarius and fructo-oligosaccharides (FOS) feeding were used to stimulate antibacterial protein expression in the intestine. Reactive oxygen species (ROS) in the intestinal mucosa was detected using 2'7'-dichlorofluorescein diacetate. The peroxynitrite production of alveolar macrophages (AMs) was measured using dihydrorhodamine 123 oxidation assay. N-acetylcysteine (NAC), an ROS scavenger, was orally administered to mice receiving antibiotics with FOS feeding. RESULTS: Antibiotic treatment decreased Pseudomonas aeruginosa (PA) phagocytic activity and activity of AMs and protein expression of regenerating islet-derived protein 3ß (Reg3ß) as well as Toll-like receptor 4 (TLR4) in the intestinal mucosa in the ventilator model. Antibiotic treatment also decreased ROS production in the intestinal mucosa, peroxynitrite production of AMs, and RELMß expression as well as NF-κB DNA binding activity of the intestinal mucosa in WT mice but not in MyD88-/- mice. Treatment with dead L. salivarius or FOS feeding increased ROS production, bacterial killing activity, and protein expression of Reg3ß as well as TLR4 in the intestinal mucosa and reversed the inhibitory effects of antibiotics on PA phagocytic activity of AMs. CONCLUSION: Taken together with the finding that ablation of FOS-induced intestinal ROS using NAC decreased peroxynitrite production as well as PA phagocytic activity of AMs and protein expression of CRP-ductin, IL-17, Reg3ß, and RELMß in the intestinal mucosa, we conclude that commensal microflora plays a key role in stimulating lung immunity. Intestinal ROS plays a role as a predictive indicator and modulator of pulmonary defense mechanisms. Antibiotic treatment reduces lung defense against PA infection through the decrease in intestinal Reg3ß and TLR4 expression. Treatment with dead L. salivarius or FOS feeding reverses the antibiotic-induced lung defense impairment through the intestinal ROS/MyD88 pathways.


Assuntos
Antibacterianos/efeitos adversos , Ligilactobacillus salivarius/fisiologia , Pulmão/imunologia , Ventiladores Mecânicos , Acetilcisteína/farmacologia , Animais , DNA/metabolismo , Hormônios Ectópicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Proteínas Associadas a Pancreatite/metabolismo , Ácido Peroxinitroso/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia/complicações , Ligação Proteica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Nature ; 481(7381): 385-8, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101431

RESUMO

Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Acetilcoenzima A/metabolismo , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Ácido Cítrico/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , NADP/metabolismo
17.
Infect Immun ; 82(5): 1994-2005, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24595141

RESUMO

Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIß, RegIIIγ, C-reactive protein-ductin, and RELMß, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.


Assuntos
Antibacterianos/farmacologia , Regulação da Expressão Gênica/imunologia , Infecções por Klebsiella/imunologia , Animais , DNA , Gastroenteropatias , Vida Livre de Germes , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Organismos Livres de Patógenos Específicos , Receptores Toll-Like
18.
Rheumatol Int ; 34(8): 1123-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24077977

RESUMO

This study aimed to characterize the manifestations of clinical symptoms and signs, primary rheumatic diseases, and other autoantibodies in pediatric patients with positive anti-SSA and/or anti-SSB antibodies. Subjects under age 18 with positive anti-SSA and/or anti-SSB antibodies were screened and enrolled in a tertiary hospital in Taiwan. Data were collected via medical records,including age, gender, onset of the primary rheumatic disease, clinical symptoms and signs, and the medication used. Schirmer test for Sjögren's syndrome (SS) screening was performed in all enrolled patients. Among twenty enrolled subjects, seventeen of them had systemic lupus erythematosus; four of them were diagnosed as SS with positive Schirmer test. In addition to antinuclear antibodies and anti-DNA antibodies, other common autoantibodies were anti-RNP antibodies (50 %) and anti-Sm antibodies(30 %). The most common symptoms were arthritis (60 %)followed by malar rash (40 %). In conclusion, we observed that a low proportion of childhood SS (4/20) exists in our patients with positive SSA and/or anti-SSB antibodies. It is suggested that clinicians should focus more on the clinical symptoms in these patients, rather than undertaking invasive diagnostic interventions to rule out Sjögren's syndrome.


Assuntos
Anticorpos Antinucleares/sangue , Artrite/diagnóstico , Exantema/diagnóstico , Lúpus Eritematoso Sistêmico/diagnóstico , Síndrome de Sjogren/diagnóstico , Adolescente , Idade de Início , Artrite/sangue , Artrite/imunologia , Biomarcadores/sangue , Criança , Pré-Escolar , Diagnóstico Diferencial , Exantema/sangue , Exantema/imunologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Valor Preditivo dos Testes , Síndrome de Sjogren/sangue , Síndrome de Sjogren/imunologia , Taiwan , Centros de Atenção Terciária
19.
Cytokine ; 63(1): 58-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623770

RESUMO

PURPOSE: Tumor necrosis factor (TNFα) is a proinflammatory cytokine and has been a target for intervention in human sepsis. However, inhibition of TNF-α with a high dose of a TNF-receptor fusion protein in patients with septic shock worsened patient survival. This study was designed to investigate whether blocking TNF-α enhances mortality in infected burn mice through the induction of IL-1ß. METHODS: WT or Tnfrsf1a(-/-) mice received Pseudomonas aeruginosa injection in the back at 8h after burn injury. The animals were sacrificed at 24h after burn and lung tissues were harvested and examined for determining myeloperoxidase (MPO) activity, pulmonary microvascular dysfunction, NF-κB DNA binding activity, and IL-1ß expression. Also, the lung and blood were harvested for bacterial count assay. RESULT: Thermal injury alone induced NF-κB DNA binding activity and neutrophil infiltration in the lung in WT but not in Tnfrsf1a(-/-) mice. A 50% total body surface area (TBSA) burn induced a significant increase of mortality in WT compared with Tnfrsf1a(-/-) mice. In contrast, P. aeruginosa injection with a 30% TBSA burn pretreatment enhanced IL-1ß expression, bacterial counts in lung and blood, pulmonary microvascular dysfunction, and mortality in Tnfrsf1a(-/-) mice compared with WT mice. Injection of the IL-1 receptor antagonist, Anakinra, reduced P. aeruginosa infection with burn pretreatment-induced blood bacterial counts, IL-1ß levels as well as permeability of lung, and mortality in Tnfrsf1a(-/-) mice. CONCLUSIONS: Our findings suggest that thermal injury induces lung NF-κB activation and neutrophil sequestration through TNFα signaling. However, blocking TNF-α enhances P. aeruginosa infection-induced lung damage in burn mice via induction of IL-1ß. Using an IL-1 receptor antagonist combined with the neutralization of TNF-α could be a useful strategy for decreasing P. aeruginosa infection-induced mortality in burn patients.


Assuntos
Queimaduras/microbiologia , Queimaduras/patologia , Interleucina-1beta/metabolismo , Pseudomonas aeruginosa/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Contagem de Colônia Microbiana , DNA/metabolismo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Peroxidase/metabolismo , Ligação Proteica/efeitos dos fármacos , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/efeitos dos fármacos , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temperatura , Fator de Necrose Tumoral alfa/metabolismo
20.
J Surg Res ; 179(1): 106-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22995661

RESUMO

BACKGROUND: Sepsis is an infectious process-induced generalized inflammatory response that mediates the excessive production of cytokines. However, anti-tumor necrosis factor (TNF)-α therapy has failed in decreasing mortality of sepsis patients due to undefined mechanisms. This study was designed to investigate whether absence of TNF receptor enhanced lung damage and mortality through toll-like receptors (TLRs) and inducible nitric oxide synthase (iNOS). MATERIALS AND METHODS: We injected Pseudomonas aeruginosa or lipopolysaccharide in the backs of wild-type, Tnfrsf1a(-/-) (deficient of TNF-α receptor 1), and TLR4(-/-) mice at 8 h after 30% total body surface area burn. The animals were sacrificed at 16 h after burn and lung tissues were harvested and examined for determining pulmonary microvascular dysfunction and interleukin (IL)-1ß, iNOS, and TLR4 expression. The blood of animals was harvested for bacterial count assay. The effect of S-methylisothiourea, an iNOS inhibitor, on P aeruginosa infection with thermal injury pretreatment-induced lung damage was also examined. RESULTS: P aeruginosa or lipopolysaccharide injection with thermal injury pretreatment enhanced TLR4, iNOS, and IL-1ß expression and pulmonary microvascular dysfunction in Tnfrsf1a(-/-) mice compared with wild-type mice. P aeruginosa infection with thermal injury pretreatment did not induce IL-1ß or iNOS expression and mortality in TLR4(-/-) mice. S-methylisothiourea treatment significantly decreased P aeruginosa infection with thermal injury pretreatment-induced lung injury, blood bacterial counts, pulmonary IL-1ß expression, and mortality in Tnfrsf1a(-/-) mice. CONCLUSIONS: Given that absence of the TNF-α receptor 1 is associated with increased lung permeability, we conclude that TNF-α decreases P aeruginosa infection-induced lung damage in burn mice through negative regulation of TLR4 as well as iNOS expression, and iNOS inhibitor might be useful in reversing anti-TNF-α therapy-induced lung injury in burn.


Assuntos
Queimaduras/complicações , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Infecções por Pseudomonas/complicações , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Animais , Queimaduras/epidemiologia , Comorbidade , Inibidores Enzimáticos/uso terapêutico , Interleucina-1beta/metabolismo , Isotiurônio/análogos & derivados , Isotiurônio/uso terapêutico , Lipopolissacarídeos/efeitos adversos , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA