Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(3): 903-920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549222

RESUMO

Pear anthracnose caused by Colletotrichum fructicola is one of the main fungal diseases in all pear-producing areas. The degradation of ubiquitinated proteins by the 26S proteasome is a regulatory mechanism of eukaryotes. E3 ubiquitin ligase is substrate specific and is one of the most diversified and abundant enzymes in the regulation mechanism of plant ubiquitination. Although numerous studies in other plants have shown that the degradation of ubiquitinated proteins by the 26S proteasome is closely related to plant immunity, there are limited studies on them in pear trees. Here, we found that an E3 ubiquitin ligase, PbATL18, interacts with and ubiquitinates the transcription factor PbbZIP4, and this process is enhanced by C. fructicola infection. PbATL18 overexpression in pear callus enhanced resistance to C. fructicola infection, whereas PbbZIP4 overexpression increased sensitivity to C. fructicola infection. Silencing PbATL18 and PbbZIP4 in Pyrus betulaefolia seedlings resulted in opposite effects, with PbbZIP4 silencing enhancing resistance to C. fructicola infection and PbATL18 silencing increasing sensitivity to C. fructicola infection. Using yeast one-hybrid screens, an electrophoretic mobility shift assay, and dual-luciferase assays, we demonstrated that the transcription factor PbbZIP4 upregulated the expression of PbNPR3 by directly binding to its promoter. PbNPR3 is one of the key genes in the salicylic acid (SA) signal transduction pathway that can inhibit SA signal transduction. Here, we proposed a PbATL18-PbbZIP4-PbNPR3-SA model for plant response to C. fructicola infection. PbbZIP4 was ubiquitinated by PbATL18 and degraded by the 26S proteasome, which decreased the expression of PbNPR3 and promoted SA signal transduction, thereby enhancing plant C. fructicola resistance. Our study provides new insights into the molecular mechanism of pear response to C. fructicola infection, which can serve as a theoretical basis for breeding superior disease-resistant pear varieties.


Assuntos
Colletotrichum , Pyrus , Ubiquitina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Proteínas Ubiquitinadas , Melhoramento Vegetal , Ubiquitina-Proteína Ligases/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia
2.
Small ; 20(8): e2306997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823688

RESUMO

MXenes have demonstrated significant potential in electrochemical energy storage, particularly in supercapacitors, owing to their exceptional properties. The surface terminal groups of MXene play a pivotal role in pseudocapacitive mechanism. Considering the hindered electrolyte ion transport caused by -F terminal groups and the limited ion binding sites associated with -O terminal groups, this study proposes a novel strategy of replacing -F with -N terminal groups. The modulated MXene-N electrode, featuring a substantial number of -N terminal groups, demonstrates an exceptionally high gravimetric capacitance of 566 F g-1 (at a scan rate of 2 mV s-1 ) or 588 F g-1 (at a discharge rate of 1 A g-1 ) in 1 м H2 SO4 electrolyte, and the potential window is significantly increased. Furthermore, subsequent spectra analysis and density functional theory calculations are employed to investigate the mechanism associated with -N terminal groups. This work exemplifies the significance of terminal modulation in the context of electrochemical energy storage.

3.
Plant Biotechnol J ; 22(5): 1177-1197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38041554

RESUMO

Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.


Assuntos
Arabidopsis , Pyrus , Arabidopsis/metabolismo , Pyrus/genética , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Germinação/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Transdução de Sinais/genética , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Anesthesiology ; 141(1): 100-115, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537025

RESUMO

BACKGROUND: Although it has been established that elevated blood pressure and its variability worsen outcomes in spontaneous intracerebral hemorrhage, antihypertensives use during the acute phase still lacks robust evidence. A blood pressure-lowering regimen using remifentanil and dexmedetomidine might be a reasonable therapeutic option given their analgesic and antisympathetic effects. The objective of this superiority trial was to validate the efficacy and safety of this blood pressure-lowering strategy that uses remifentanil and dexmedetomidine in patients with acute intracerebral hemorrhage. METHODS: In this multicenter, prospective, single-blinded, superiority randomized controlled trial, patients with intracerebral hemorrhage and systolic blood pressure (SBP) 150 mmHg or greater were randomly allocated to the intervention group (a preset protocol with a standard guideline management using remifentanil and dexmedetomidine) or the control group (standard guideline-based management) to receive blood pressure-lowering treatment. The primary outcome was the SBP control rate (less than 140 mmHg) at 1 h posttreatment initiation. Secondary outcomes included blood pressure variability, neurologic function, and clinical outcomes. RESULTS: A total of 338 patients were allocated to the intervention (n = 167) or control group (n = 171). The SBP control rate at 1 h posttreatment initiation in the intervention group was higher than that in controls (101 of 161, 62.7% vs. 66 of 166, 39.8%; difference, 23.2%; 95% CI, 12.4 to 34.1%; P < 0.001). Analysis of secondary outcomes indicated that patients in the intervention group could effectively reduce agitation while achieving lighter sedation, but no improvement in clinical outcomes was observed. Regarding safety, the incidence of bradycardia and respiratory depression was higher in the intervention group. CONCLUSIONS: Among intracerebral hemorrhage patients with a SBP 150 mmHg or greater, a preset protocol using a remifentanil and dexmedetomidine-based standard guideline management significantly increased the SBP control rate at 1 h posttreatment compared with the standard guideline-based management.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Hemorragia Cerebral , Dexmedetomidina , Remifentanil , Humanos , Dexmedetomidina/uso terapêutico , Dexmedetomidina/administração & dosagem , Remifentanil/administração & dosagem , Remifentanil/uso terapêutico , Masculino , Feminino , Estudos Prospectivos , Hemorragia Cerebral/tratamento farmacológico , Idoso , Pessoa de Meia-Idade , Método Simples-Cego , Pressão Sanguínea/efeitos dos fármacos , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/administração & dosagem , Resultado do Tratamento , Hipnóticos e Sedativos/uso terapêutico
5.
Planta ; 257(4): 68, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853424

RESUMO

MAIN CONCLUSION: The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.


Assuntos
Fragaria , Malus , Prunus persica , Pyrus , Rosaceae , Rosaceae/genética , Pyrus/genética , Tubo Polínico/genética , Filogenia , Proliferação de Células
6.
Anal Biochem ; 676: 115235, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422063

RESUMO

African swine fever virus (ASFV) is a kind of DNA virus and can infect both domestic pigs and wild boars with fatality up to 100%. The contaminated meat products mainly led to the worldwide transmission of ASFV. The outbreak of ASF greatly affects the supply stability of meat products as well as the development of the global pig industry. In this study, a visual isothermal amplification detection assay for ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas12a was developed. The introduction of Cas12a could discriminate the specific amplification from the non-specific amplification and improve the sensitivity. The detection limit was as low as 0.23 copies/µL. This assay had good potential in the detection of ASFV and would be helpful for the stability of meat production and supply.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Sus scrofa
7.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 96-101, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158682

RESUMO

This study aimed to investigate the effects of ulinastatin on the apoptosis and (Sirt1/FoxO3a) pathway of vascular smooth muscle cells (VSMC) in aortic dissection (AD) rats. For this purpose a rat model of aortic dissection (AD) was constructed by giving drinking water containing 0.08% ß-aminopropionitrile (BAPN) to rats, HE staining was used to observe the pathological changes of the aorta in AD rats; the diseased blood vessels of AD rats were taken for primary culture and passage of VSMCs, the morphology of VSMCs was observed, and VSMCs were identify with immunofluorescence staining; VSMCs were treated with culture media containing 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000 U/mL ulinastatin, and MTT kit was used to determine the effect of ulinastatin on VSMC proliferation in AD rats; the VSMC of AD rats were divided into blank group (normal culture), ulinastatin group (medium containing 5000 U/mL ulinastatin), Sirt1 inhibitor group (medium containing 1 µmol/L EX527), ulinastatin + Sirt1 inhibitor group (medium containing 5000 U/mL ulinastatin, 1 µmol/L EX527), flow cytometry was used to detect the VSMC apoptosis in each group, WB was used to detect the expression of VSMC apoptosis-related proteins and Sirt1/FoxO3a pathway-related proteins in each group. Findings suggested that the aortic wall of AD rats was thickened, and the dissection false cavity appeared; VSMC mostly presented different shapes such as triangles and stars, the immunofluorescence staining results showed that α-SMA was arranged in the cytoplasm in the form of myofilaments, showing green fluorescence, and the nucleus showed blue fluorescence, and the rate of positive cells was more than 95%; various doses of ulinastatin had a certain inhibitory effect on the proliferation of VSMC, and 5000 U/mL ulinastatin had a higher proliferation inhibition rate; compared with the blank group, the VSMC apoptosis rate, Caspase-3, Bax protein, Sirt1/FoxO3a pathway related protein expression in the ulinastatin group were significantly increased, and the Bcl-2 protein expression was significantly decreased (P<0.05), the VSMC apoptosis rate, Caspase-3, Bax protein, Sirt1/FoxO3a pathway related protein expression in the Sirt1 inhibitor group were significantly decreased, and the Bcl-2 protein expression was significantly increased (P<0.05); compared with the ulinastatin group, the VSMC apoptosis rate, Caspase-3, Bax protein, Sirt1/FoxO3a pathway related protein expression in the ulinastatin + Sirt1 inhibitor group were significantly decreased, and the Bcl-2 protein expression was significantly increased (P<0.05). It was concluded that ulinastatin can inhibit the proliferation of VSMCs in AD rats and promote their apoptosis, which may be achieved by activating the Sirt1/FoxO3a pathway.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Ratos , Animais , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Sirtuína 1/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Miócitos de Músculo Liso
8.
Small ; 18(4): e2105696, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837326

RESUMO

The oxygen evolution reaction (OER) plays a key role in many electrochemical energy conversion systems, but it is a kinetically sluggish reaction and requires a large overpotential to deliver appreciable current, especially for the non-noble metal electrocatalysts. In this study, the authors report a surface phase engineering strategy to improve the OER performance of transition metal nitrides (TMNs). The iron-nickel nitrides/alloy nanospheres (FeNi3 -N) wrapped in carbon are synthesized, and the optimized FeNi3 -N catalyst displays dual-phase nitrides on the surface induced by atom migration phenomenon, resulting from the different migration rates of metal atoms during the nitridation process. It shows excellent OER performance in alkaline media with an overpotential of 222 mV at 10 mA cm-2 , a small Tafel slope of 41.53 mV dec-1 , and long-term durability under high current density (>0.5 A cm-2 ) for at least 36 h. Density functional theory (DFT) calculations further reveal that the dual-phase nitrides are favorable to decrease the energy barrier, modulate the d-band center to balance the absorption and desorption of the intermediates, and thus promote the OER electrochemical performance. This strategy may shed light on designing OER and other catalysts based on surface phase engineering.

9.
Planta ; 257(1): 5, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434152

RESUMO

MAIN CONCLUSION: Identification of MAPKKK genes in pear and functional characterization of PbrMAPKKK82 in response to pear black spot. Mitogen-activated protein kinase kinase kinase (MAPKKK) is located upstream of the MAPK cascade pathway. This region senses extracellular stimuli via the signaling molecule or by themselves and is activated by phosphorylation. In this study, we identified 108 PbrMAPKKK genes from the pear genome. The genes were divided into three subfamilies and contained the conserved domain. Except for chromosome 7, there were 93 PbrMAPKKK genes randomly distributed on 16 out of the 17 chromosomes, while 15 PbrMAPKKK genes were detected on unknown chromosomes. They largely originated from whole-genome duplication (WGD) and dispersed events. In the expression analysis of PbrMAPKKK genes in seven pear tissue types by using a database, 20 PbrMAPKKK genes were selected to verify the expression associated with different resistance in two varieties by quantitative real-time PCR (qRT-PCR). The results showed that PbrMAPKKK12, PbrMAPKKK13, PbrMAPKKK53, PbrMAPKKK60, PbrMAPKKK65, PbrMAPKKK82, PbrMAPKKK83, and PbrMAPKKK96 were correlated with black spot resistance. PbrMAPKKK3, PbrMAPKKK9, PbrMAPKKK11, PbrMAPKKK34, PbrMAPKKK80, PbrMAPKKK81, PbrMAPKKK99, and PbrMAPKKK100 were correlated with black spot susceptibility, while the PbrMAPKKK gene positively responded to the life process of pear resistance to black spot. Furthermore, virus-induced gene silencing (VIGS) indicated that the PbrMAPKKK82 gene enhanced resistance to pear black spot disease.


Assuntos
Pyrus , Pyrus/genética , MAP Quinase Quinase Quinases/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Evolução Molecular , Filogenia
10.
BMC Plant Biol ; 21(1): 583, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886805

RESUMO

BACKGROUND: Transcription factors (TFs) are involved in many important biological processes, including cell stretching, histological differentiation, metabolic activity, seed storage, gene regulation, and response to abiotic and biotic stresses. Little is known about the functions, evolutionary history, and expression patterns of basic region-leucine zipper TF family genes in pear, despite the release of the genome of Chinese white pears ("Dangshansuli"). RESULTS: Overall, 92 bZIP genes were identified in the pear genome (Pyrus breschneideri). Of these, 83 were randomly distributed on all 17 chromosomes except chromosome 4, and the other 9 genes were located on loose scaffolding. The genes were divided into 14 subgroups. Whole-genome duplications, dispersed duplication, and purifying selection for whole-genome duplications are the main reasons for the expansion of the PbrbZIP gene family. The analysis of functional annotation enrichment indicated that most of the functions of PbrbZIP genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways involved in the abiotic stress response. Next, expression analysis and virus-induced gene silencing results indicated that PbrbZIP genes might play critical roles in response to drought and cold stresses, especially for the genes from subgroups A, C, G, I, and S. CONCLUSIONS: Ninety-two PbrbZIP genes were identified from the pear genome and classified into 14 subgroups. PbrbZIP genes were mainly expanded from whole-genome duplications and dispersed duplications and retained by purifying selection. PbrbZIP genes were induced by cold and drought stresses and played important roles in drought and cold tolerance. These results provided useful information for further increasing the tolerance of pears to stresses and a foundation to study the cold and drought tolerance mechanism of PbrbZIP genes.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Resposta ao Choque Frio , Secas , Genoma de Planta , Pyrus/genética , Motivos de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Resposta ao Choque Frio/genética , Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pyrus/fisiologia , RNA-Seq
11.
BMC Plant Biol ; 21(1): 86, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563216

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factors play important roles in many processes in plant growth, metabolism and responses to abiotic stresses. Although, the sequence of Chinese white pear genome (cv. 'Dangshansuli') has already been reported, there is still a lack of clarity regarding the bHLH family genes and their evolutionary history. RESULTS: In this work, a genome-wide identification of the bHLH genes in Chinese white pear was performed, and we characterized the functional roles of these PbrbHLH genes in response to abiotic stresses. Based on the phylogenetic analysis and structural characteristics, 197 identified bHLH genes could be well classified into 21 groups. Expansion of PbrbHLH gene family was mainly driven by WGD and dispersed duplication with the purifying selection from the recent WGD. The functional annotation enrichment showed that the majority of PbrbHLHs were enriched in the GO terms and KEGG pathways involved in responds to stress conditions as TFs. Transcriptomic profiles and qRT-PCR revealed that PbrbHLH7, PbrbHLH8, PbrbHLH128, PbrbHLH160, PbrbHLH161 and PbrbHLH195 were significantly up-regulated under cold and drought treatments. In addition, PbrbHLH195-silenced pear seedlings display significant reduced cold tolerance, exhibiting reduced chlorophyll content, as well as increased electrolyte leakage and concentrations of malondialdehyde and H2O2. CONCLUSION: For the first time, a comprehensive analysis identified the bHLH genes in Chinese white pear and demonstrated that PbrbHLH195 is involved in the production of ROS in response to cold stress, suggesting that members of the PbrbHLH family play an essential role in the stress tolerance of pear.


Assuntos
Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Secas , Genes de Plantas , Pyrus/genética , Pyrus/fisiologia , Fatores de Transcrição/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica
12.
Small ; 17(13): e2007858, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33690975

RESUMO

Transition metal phosphides (TMPs), especially the dual-metal TMPs, are highly active non-precious metal oxygen evolution reaction (OER) electrocatalysts. Herein, an interesting atom migration phenomenon induced by Kirkendall effect is reported for the preparation of cobalt-iron (Co-Fe) phosphides by the direct phosphorization of Co-Fe alloys. The compositions and distributions of the Co and Fe phosphides phases on the surfaces of the electrocatalysts can be readily controlled by Cox Fey alloys precursors and the phosphorization process with interesting atom migration phenomenon. The optimized Co7 Fe3 phosphides exhibit a low overpotential of 225 mV at 10 mA cm-2 in 1 m KOH alkaline media, with a small Tafel slope of 37.88 mV dec-1 and excellent durability. It only requires a voltage of 1.56 V to drive the current density of 10 mA cm-2 when used as both anode and cathode for overall water splitting. This work opens a new strategy to controllable preparation of dual-metal TMPs with designed phosphides active sites for enhanced OER and overall water splitting.

13.
Planta ; 253(2): 32, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33439355

RESUMO

MAIN CONCLUSION: Genome-wide identification, tissue-specific and stress expression analyses and functional characterization of PbrATG8s genes were conducted and the role of PbrATG8c in Botryosphaeria dothidea resistance was further investigated. Autophagy plays an important role in plant growth, development and stress tolerance. ATG8 has been reported to be an autophagy marker in many species. However, there is little information regarding ATG8 family members in pear (Pyrus bretschneideri Rehd). We performed a genome-wide analysis and identified nine PbrATG8 gene family members in pear. Phylogenetic analysis showed that PbrATG8 genes clustered into four major groups (Groups I-IV). Eight PbrATG8 genes were successfully mapped to 6 of the 17 chromosomes of the pear genome. The synteny results showed that two pairs are collinear. Gene expression data showed that all genes were differentially expressed in a range of pear tissues. Transcript analysis of PbrATG8 genes under dehydration, salt and pathogen infection stresses revealed that PbrATG8c responded to all test stresses. The PbrATG8c protein was localized in the nucleus and membrane. The silencing of PbrATG8c decreased the resistance to Botryosphaeria dothidea in pear. This study provides insights and rich resources for subsequent investigations of autophagy in pear.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Pyrus , Ascomicetos , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Resistência à Doença/genética , Evolução Molecular , Perfilação da Expressão Gênica , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/microbiologia
14.
Basic Res Cardiol ; 116(1): 48, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379189

RESUMO

Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure. AAV-based LncHrt overexpression protects the heart from MI as demonstrated by improved contractile function, preserved metabolic homeostasis, and attenuated maladaptive remodeling responses. RNA-pull down followed by mass spectrometry and RNA immunoprecipitation (RIP) identified SIRT2 as a LncHrt-interacting protein involved in cardiac metabolic regulation. Mechanistically, we established that LncHrt interacts with SIRT2 to preserve SIRT2 deacetylase activity by interfering with the CDK5 and SIRT2 interaction. This increases downstream LKB1-AMPK kinase signaling, which ameliorates functional and metabolic deficits. Importantly, we found the expression of the human homolog of mouse LncHrt was decreased in patients with dilated cardiomyopathy. Together, these studies identify LncHrt as a cardiac metabolic regulator that plays an essential role in preserving heart function by regulating downstream metabolic signaling pathways. Consequently, LncHrt is a potentially novel RNA-based therapeutic target for ischemic heart disease.


Assuntos
RNA Longo não Codificante , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
15.
Nanotechnology ; 32(32)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33902011

RESUMO

This study looked at the process of designing and synthesized expanded graphite (EG) and modifying it with bio-inspired dopamine (DOPA). This is a process used to improve the thermal conductivity and dielectric properties of methyl vinyl silicone rubber (VMQ). The results demonstrated that the EG-DOPA-VMQ composites acquired an exceptional thermal conductivity of 1.015 W mK-1at the loading of 10 wt%, approximately 480% higher than that of pure silicone rubber (0.175 W mK-1). This enhancement is mainly attributed to the improved dispersion capability of EG-DOPA and the robust interfacial interaction between EG-DOPA-VMQ interfaces; specifically, this is the result when compared with pristine EG. Moreover, throughout this process, the composites maintained an excellent insulating property with a resistance of ≈1012Ω · cm; this particular result was due to the DOPA deposited on EG surfaces because they acted as an insulating layer, inhibiting the electron transfer in composites. Overall, this work demonstrated that it could present a promising strategy for synchronized manufacturing of polymer composites with high thermal conductivity and insulating capability.

16.
BMC Genomics ; 21(1): 612, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894061

RESUMO

BACKGROUND: Lysin motif-containing proteins (LYP), which act as pattern-recognition receptors, play central roles in growth, node formation, and responses to biotic stresses. The sequence of Chinese white pear genome (cv. 'Dangshansuli') along with the seven other species of Rosaceae has already been reported. Although, in these fruit crops, there is still a lack of clarity regarding the LYP family genes and their evolutionary history. RESULTS: In the existing study, eight Rosaceae species i.e., Pyrus communis, Prunus persica, Fragaria vesca, Pyrus bretschneideri, Prunus avium, Prunus mume, Rubus occidentalis, and Malus × domestica were evaluated. Here, we determined a total of 124 LYP genes from the underlined Rosaceae species. While eighteen of the genes were from Chinese white pear, named as PbrLYPs. According to the LYPs structural characteristics and their phylogenetic analysis, those genes were classified into eight groups (group LYK1, LYK2, LYK3, LYK4/5, LYM1/3, LYM2, NFP, and WAKL). Dispersed duplication and whole-genome duplication (WGD) were found to be the most contributing factors of LYP family expansion in the Rosaceae species. More than half of the duplicated PbrLYP gene pairs were dated back to the ancient WGD (~ 140 million years ago (MYA)), and PbrLYP genes have experienced long-term purifying selection. The transcriptomic results indicated that the PbrLYP genes expression was tissue-specific. Most PbrLYP genes showed differential expression in leaves under fungal pathogen infection with two of them located in the plasmalemma. CONCLUSION: A comprehensive analysis identified 124 LYP genes in eight Rosaceae species. Our findings have provided insights into the functions and characteristics of the Rosaceae LYP genes and a guide for the identification of other candidate LYPs for further genetic improvements for pathogen-resistance in higher plants.


Assuntos
Resistência à Doença , Proteínas de Plantas/genética , Proteínas Quinases/genética , Pyrus/genética , Motivos de Aminoácidos , Ascomicetos/patogenicidade , Regulação da Expressão Gênica de Plantas , Lisina/química , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Pyrus/classificação , Pyrus/microbiologia
17.
BMC Plant Biol ; 20(1): 146, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268888

RESUMO

BACKGROUND: Lysin motif (LysM)-containing proteins are involved in the recognition of fungal and bacterial pathogens. However, few studies have reported on their roles in the defense responses of woody plants against pathogens. A previous study reported that the apple MdCERK1 gene was induced by chitin and Rhizoctonia solani, and its protein can bind to chitin. However, its effect on defense responses has not been investigated. RESULTS: In this study, a new apple CERK gene, designated as MdCERK1-2, was identified. It encodes a protein that shares high sequence identity with the previously reported MdCERK1 and AtCERK1. Its chitin binding ability and subcellular location are similar to MdCERK1 and AtCERK1, suggesting that MdCERK1-2 may play a role in apple immune defense responses as a pattern recognition receptor (PRR). MdCERK1-2 expression in apple was induced by 2 fungal pathogens, Botryosphaeria dothidea and Glomerella cingulate, but not by the bacterial pathogen, Erwinia amylovora, indicating that MdCERK1-2 is involved in apple anti-fungal defense responses. Further functional analysis by heterologous overexpression (OE) in Nicotiana benthamiana (Nb) demonstrated that MdCERK1-2 OE improved Nb resistance to the pathogenic fungus, Alternaria alternata. H2O2 accumulation and callose deposition increased after A. alternata infection in MdCERK1-2 OE plants compared to wild type (WT) and empty vector (EV)-transformed plants. The induced expression of NbPAL4 by A. alternata significantly (p < 0.01, n = 4) increased in MdCERK1-2 OE plants. Other tested genes, including NbNPR1, NbPR1a, NbERF1, and NbLOX1, did not exhibit significant changes after A. alternata infection in OE plants compared to EV or WT plants. OE plants also accumulated more polyphenols after A. alternata infection. CONCLUSIONS: Heterologous MdCERK1-2 OE affects multiple defense responses in Nb plants and increased their resistance to fungal pathogens. This result also suggests that MdCERK1-2 is involved in apple defense responses against pathogenic fungi.


Assuntos
Alternaria/fisiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis , Malus/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases , Nicotiana/imunologia
18.
Med Sci Monit ; 26: e922497, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32467560

RESUMO

BACKGROUND Disc degeneration is characterized partly by the degradation in the extracellular matrix (ECM) and excess apoptosis of nucleus pulposus (NP) cells. NLRX1 (nucleotide-binding, leucine-rich repeat containing X1) is different from the other nucleotide-binding-domain and leucine-rich-repeat proteins and mainly located to the mitochondrial. It negatively regulates NF-κB (nuclear factor kappa B) and apoptosis inhibition. However, how NLRX1 is regulated and exerts effects in disc degeneration is unclear. Thus, the study aimed to analyze the effects of NLRX1 on NP cells. MATERIAL AND METHODS NLRX1 expression was detected in interleukin (IL)-1ß-induced NP cells by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Then, NLRX1 was overexpressed in IL-1ß-induced NP cells to detect apoptosis-related proteins and the extracellular matrix (ECM) by western blot, along with the detection of apoptosis levels using flow cytometry. StarBase predicted miR-423-5p target 3'UTR of NLRX1. Dual luciferase reporter assay showed that miR-423-5p could bind to the 3'UTR of NLRX1. Besides, miR-423-5p significantly affected NLRX1 levels detected by qRT-qPCR. RESULTS The miR-423-5p overexpression markedly, and negatively regulated the protective effects of NLRX1 on IL-1ß induced NP cells. Thus, our results suggested that miR-423-5p mediated the regulation of NLRX1 to affect apoptosis and ECM levels in IL-1ß induced NP cells. CONCLUSIONS miR-423-5p and NLRX1 could be potential therapeutic targets for patients with disc degeneration.


Assuntos
Matriz Extracelular/genética , Interleucina-1beta/farmacologia , MicroRNAs/genética , Núcleo Pulposo/metabolismo , Apoptose/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Leucina/farmacologia , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/fisiologia , Transdução de Sinais/efeitos dos fármacos
19.
J Hum Genet ; 64(9): 875-883, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273320

RESUMO

Micrognathia is a common craniofacial deformity which represents hypoplastic development of the mandible, accompanied by retrognathia and consequent airway problems. Usually, micrognathia is accompanied by multiple systematic defects, known as syndromic micrognathia, and is in close association with genetic factors. Now, large quantities of pathogenic genes of syndromic micrognathia have been revealed. However, how these different pathogenic genes could lead to similar phenotypes, and whether there are some common characteristics among these pathogenic genes are still unknown. In this study, we proposed a genetic-phenotypic classification of syndromic micrognathia based on pathogenic genes information obtained from Phenolyzer, DAVID, OMIM, and PubMed database. Pathogenic genes of syndromic micrognathia could be divided into four groups based on gene function, including cellular processes and structures, cell metabolism, cartilage and bone development, and neuromuscular function. In addition, these four groups exhibited various clinical characteristics, and the affected systems, such as central nervous system, skeletal system, cardiovascular system, oral and dental system, respiratory system and muscle, were different in these four groups. This classification could provide meaningful insights into the pathogenesis of syndromic micrognathia, and offer some clues for understanding the molecular mechanism, as well as guiding precise clinical diagnosis and treatment for syndromic micrognathia.


Assuntos
Mandíbula/patologia , Micrognatismo/classificação , Micrognatismo/genética , Micrognatismo/patologia , Fenótipo , Humanos , Síndrome
20.
Electrophoresis ; 40(9): 1331-1336, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30676663

RESUMO

The release of cytochrome C (Cyt C) plays an important role in apoptosis. In this study, selective and sensitive detection of Cyt C based on an aptamer strategy coupled with MCE was developed. Following the binding of a specific aptamer to Cyt C, the aptamer exhibited an irregular state, reducing the binding affinity of a fluorescent probe, and thus preventing the aptamer-Cyt C complexes from detection within the MCE. The height of the detection peak of the residual aptamer linearly decreased, and therefore, the difference in peak height of residual aptamer compared to that of the initial aptamer was used to quantify the captured protein concentration. Experimental conditions such as incubation time, pH, temperature, and ionic strength were optimized. A measurement of Cyt C concentration by MCE was achieved within 135 s, with a limit of detection as low as 0.4 nM. The proposed method has high selectivity and good stability for the detection of Cyt C. The experimental results demonstrate that this method is quick, consumes only a small quantity of sample, is highly selectivity and exhibits high sensitivity.


Assuntos
Aptâmeros de Nucleotídeos/química , Citocromos c/análise , Eletroforese em Microchip/métodos , Animais , Corantes Fluorescentes , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA