Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Chem Soc ; 146(31): 21377-21388, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046802

RESUMO

Aqueous zinc (Zn) iodine (I2) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion. Due to this design, we demonstrate an excellent Zn-plating/-stripping behavior in Zn||Cu asymmetric cells over 1000 cycles with an average Coulombic efficiency (CE) of 99.95%. Moreover, the Zn||I2 full cells achieve a high-rate capability (217.1 mA h g-1 at 40 A g-1; C rate of 189.5C) at room temperature and enable stable cycling with a CE of more than 99% at -50 °C at a current density of 0.05 A g-1. In situ spectroscopic investigations and simulations reveal that introducing tetraethylammonium cations as ion sieves can dynamically modulate the electrode-electrolyte interface environment, forming the unique water-deficient and chloride ion (Cl-)-rich interface. Such Janus interface accounts for the suppression of side reactions, the prevention of ICl decomposition, and the enrichment of reactants, enhancing the reversibility of Zn-stripping/-plating and four-electron iodine chemistry. This fundamental understanding of the intrinsic interplay between the electrode-electrolyte interface and cations offers a rational standpoint for tuning the reversibility of iodine conversion.

2.
Small ; 20(8): e2305687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840433

RESUMO

Aqueous zinc ion batteries (ZIBs) hold great promise for large-scale energy storage; however, severe zinc dendritic growth and side reactions on the anode dramatically impede their commercial application. Herein, a Zr-based MOF (UiO-66) functionalized with a high density of sulfonic acid (─SO3 H) groups is used to modify the glass fiber (GF) separator of ZIBs, providing a unique solution for stabilizing Zn anode. Benefiting from the strong interaction between zincophilic -SO3 H and Zn2+ , this sulfonate-rich UiO-66 modified GF (GF@UiO-S2) separator not only guarantees the homogeneous distribution of ion flux, but also accelerates the ion migration kinetics. Hence, the GF@UiO-S2 separator promotes uniform Zn plating/stripping on the Zn anode and facilitates the desolvation of hydrated Zn2+ ions at the interface, which helps guide dendrite-free Zn deposition and inhibit undesired side reactions. Accordingly, the Zn||Zn symmetric cell with this separator achieves excellent cycling stability with a long cycle life exceeding 3450 h at 3 mA cm-2 . Besides, the Zn||MnO2 full cell paired with this separator delivers remarkable cyclability with 90% capacity retention after 1200 cycles. This design of metal-organic frameworks functionalized separators provides a new insight for constructing highly robust ZIBs.

3.
J Comput Assist Tomogr ; 48(2): 303-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37654056

RESUMO

INTRODUCTION: In glioma patients that have undergone surgical tumor resection, the ability to reliably distinguish between pseudoprogression (PsP) and a recurrent tumor (RT) is of key clinical importance. Accordingly, this meta-analysis evaluated the utility of dynamic susceptibility contrast-enhanced perfusion-weighted imaging as a means of distinguishing between PsP and RT when analyzing patients with high-grade glioma. MATERIALS AND METHODS: The PubMed, Web of Science, and Wanfang databases were searched for relevant studies. Pooled analyses of sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) values were conducted, after which the area under the curve (AUC) for summary receiver operating characteristic curves was computed. RESULTS: This meta-analysis ultimately included 21 studies enrolling 879 patients with 888 lesions. Cerebral blood volume-associated diagnostic results were reported in 20 of the analyzed studies, and the respective pooled sensitivity, specificity, PLR, and NLR values were 86% (95% confidence interval [CI], 0.81-0.89), 83% (95% CI, 0.77-0.87), 4.94 (95% CI, 3.61-6.75), and 0.18 (95% CI, 0.13-0.23) for these 20 studies. The corresponding AUC value was 0.91 (95% CI, 0.88-0.93), and the publication bias risk was low ( P = 0.976). Cerebral blood flow-related diagnostic results were additionally reported in 6 of the analyzed studies, with respective pooled sensitivity, specificity, PLR, and NLR values of 85% (95% CI, 0.78-0.90), 85% (95% CI, 0.76-0.91), 5.54 (95% CI, 3.40-9.01), and 0.18 (95% CI, 0.12-0.26). The corresponding AUC value was 0.92 (95% CI, 0.89-0.94), and the publication bias risk was low ( P = 0.373). CONCLUSIONS: The present meta-analysis results suggest that dynamic susceptibility contrast-enhanced perfusion-weighted imaging represents an effective diagnostic approach to distinguishing between PsP and RT in high-grade glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Sensibilidade e Especificidade , Glioma/diagnóstico por imagem , Glioma/patologia , Angiografia por Ressonância Magnética , Perfusão
4.
Angew Chem Int Ed Engl ; 63(36): e202407038, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871655

RESUMO

Reconstruction-engineered electrocatalysts with enriched high active Ni species for urea oxidation reaction (UOR) have recently become promising candidates for energy conversion. However, to inhibit the over-oxidation of urea brought by the high valence state of Ni, tremendous efforts are devoted to obtaining low-value products of nitrogen gas to avoid toxic nitrite formation, undesirably causing inefficient utilization of the nitrogen cycle. Herein, we proposed a mediation engineering strategy to significantly boost high-value nitrite formation to help close a loop for the employment of a nitrogen economy. Specifically, platinum-loaded nickel phosphides (Pt-Ni2P) catalysts exhibit a promising nitrite production rate (0.82 mol kWh-1 cm-2), high stability over 66 h of Zn-urea-air battery operation, and 135 h of co-production of nitrite and hydrogen under 200 mA cm-2 in a zero-gap membrane electrode assembly (MEA) system. The in situ spectroscopic characterizations and computational calculations demonstrated that the urea oxidation kinetics is facilitated by enriched dynamic Ni3+ active sites, thus augmenting the "cyanate" UOR pathway. The C-N cleavage was further verified as the rate-determining step for nitrite generation.

5.
Angew Chem Int Ed Engl ; 63(21): e202401987, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38526053

RESUMO

The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.

6.
Angew Chem Int Ed Engl ; 62(16): e202300608, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36809576

RESUMO

The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed ∼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0 V and 3,000 cycles with a normal voltage window of 0.8-1.9 V at a current density of 2 A g-1 .

7.
Angew Chem Int Ed Engl ; 62(18): e202301192, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36866940

RESUMO

Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+ ) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries.

8.
Angew Chem Int Ed Engl ; 62(27): e202218122, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37081751

RESUMO

Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3 C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3 C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3 C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 µg h-1 mg-1 cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 - yield rate up to 15.7 µg h-1 mg-1 cat. and FE up to 3.4 % in nitrogen oxidation reaction).

9.
Angew Chem Int Ed Engl ; 62(5): e202212695, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36375075

RESUMO

Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4 + tends to be preferably absorbed on the Zn surface to form a "shielding effect" and blocks the direct contact of water with Zn. Moreover, NH4 + and (H2 PO4 )- jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.

10.
Small ; 18(9): e2106356, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918469

RESUMO

For practical energy storage devices, a bottleneck is to retain decent integrated performances while increasing the mass loading of active materials to the commercial level, which highlights an urgent need for novel electrode structure design strategies. Here, an active nitrogen-doped carbon interface with "high conductivity, high porosity, and high electrolyte affinity" on a flexible cellulose electrode surface is engineered to accommodate 1D active materials. The high conductivity of interface favors fast electron transport, while its high porosity and high electrolyte affinity properties benefit ion migration. As a result, the flexible anode accommodated by carbon nanotubes achieves an ultrahigh capacitance of 9501 mF cm-2 (315.6 F g-1 ) at a high mass loading of 30.1 mg cm-2 , and the flexible cathode accommodated by polypyrrole nanotubes realizes a remarkably high capacitance of 6212 mF cm-2 (248 F g-1 , 25 mg cm-2 ). The assembled flexible quasi-solid-state asymmetric supercapacitor delivers a maximum energy density of 1.42 mWh cm-2 (2.2 V, 2105 mF cm-2 ), representing the highest value among all reported flexible supercapacitors. This versatile design concept provides a new way to prepare high performance flexible energy storage devices.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Celulose , Eletrodos , Polímeros/química , Pirróis/química
11.
Adv Sci (Weinh) ; 11(25): e2402821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666375

RESUMO

Dendrite growth and other side-reaction problems of zinc anodes in aqueous zinc-ion batteries heavily affect their cycling lifespan and Coulombic efficiency, which can be effectively alleviated by the application of polymer-based functional protection layer on the anode. However, the utilization rate of functional groups is difficult to improve without destroying the polymer chain. Here, a simple and well-established strategy is proposed by controlling the orientation of functional groups (─SO3H) to assist the optimization of zinc anodes. Depending on the electrostatic effect, the surface-enriched ─SO3H groups increase the ionic conductivity and homogenize the Zn2+ flux while inhibiting anionic permeation. This approach avoids the destruction of the polymer backbone by over-sulfonation and amplifies the effect of functional groups. Therefore, the modified sulfonated polyether ether ketone (H-SPEEK) coating-optimized zinc anode is capable of longtime stable zinc plating/stripping, and moreover an enhanced cycling steadiness under high current densities is also detected in a series of Zn batteries with different cathode materials, which achieved by the inclusion of H-SPEEK coating without causing any harmful effects on the electrolyte and cathode. This work provides an easy and efficient approach to further optimize the plating/stripping of cations on metal electrodes, and sheds lights on the scale-up of high-performance aqueous zinc-ion battery technology.

12.
Adv Mater ; 36(14): e2310645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226766

RESUMO

Aqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution. This genuine limitation poses a considerable challenge to their transition from the laboratory to the industry. In this study, leveraging density functional theory (DFT) calculations, an artificial interphase that achieves both hydrophobicity and restriction of the outward penetration of dissolved vanadium cations, thereby shifting the reaction equilibrium and suppressing the vanadium dissolution following Le Chatelier's principle, is described. The approach has resulted in one of the best cycling stabilities to date, with no noticeable capacity fading after more than 200 cycles (≈720 h) at 200 mA g-1 (0.47C). These findings represent a significant advance in the design of ultrastable cathodes for aqueous batteries and accelerate the industrialization of aqueous zinc-ion batteries.

13.
Chem Sci ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39170725

RESUMO

Sodium-ion batteries (SIBs) have attracted wide attention from academia and industry due to the low cost and abundant sodium resources. Despite the rapid industrialization development of SIBs, it still faces problems such as a low initial coulombic efficiency (ICE) leading to a significant decrease in battery energy density (e.g., 20%). Sodium compensation technology (SCT) has emerged as a promising strategy to effectively increase the ICE to 100% and drastically boost battery cycling performance. In this review, we emphasize the importance of SCT in high-performance SIBs and introduce its working principle. The up-to-date advances in different SCTs are underlined in this review. In addition, we elaborate the current merits and demerits of different SCTs. This review also provides insights into possible future research directions in SCT for high-energy SIBs.

14.
ACS Appl Mater Interfaces ; 15(17): 21075-21085, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079721

RESUMO

Conjugated microporous polymers (CMPs) with porous structure and rich polar units are favorable for high-performance lithium-sulfur (Li-S) batteries. However, understanding the role of building blocks in polysulfide catalytic conversion is still limited. In this work, two triazine-based CMPs are constructed by electron-accepting triazine with electron-donating triphenylbenzene (CMP-B) or electron-accepting triphenyltriazine (CMP-T), which can grow on a conductive carbon nanotube (CNT) to serve as separator modifiers for Li-S batteries. CMP-B@CNT features faster ion transportation than the counterpart of CMP-T@CNT. More importantly, compared with acceptor-acceptor (A-A) CMP-T, donor-acceptor (D-A) CMP-B possesses a higher degree of conjugation and a narrower band gap, which are conducive to the electron transfer along the polymer skeleton, thus accelerating the sulfur redox kinetics. Consequently, the CMP-B@CNT functional separator endows Li-S cells with an outstanding initial capacity of 1371 mAh g-1 at 0.1 C and favorable cycling stability with a capacity degradation rate of 0.048% per cycle at 1 C for 800 cycles. This work provides insight into the rational design of efficient catalysts for advanced Li-S batteries.

15.
Nanomicro Lett ; 15(1): 81, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002511

RESUMO

Although their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction, Zn corrosion and passivation, and Zn dendrite formation on the anode. Despite numerous strategies to alleviate these side reactions have been demonstrated, they can only provide limited performance improvement from a single aspect. Herein, a triple-functional additive with trace amounts, ammonium hydroxide, was demonstrated to comprehensively protect zinc anodes. The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes. Moreover, cationic NH4+ can preferentially adsorb on the Zn anode surface to shield the "tip effect" and homogenize the electric field. Benefitting from this comprehensive protection, dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized. Besides, improved electrochemical performances can also be achieved in Zn//MnO2 full cells by taking the advantages of this triple-functional additive. This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.

16.
Chem Sci ; 14(32): 8662-8671, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592989

RESUMO

High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a "Mn-locking" effect-to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes.

17.
ACS Nano ; 16(11): 19124-19132, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36288612

RESUMO

MXene-based structural materials with high mechanical robustness and excellent electrical conductivity are highly desirable for multifunctional applications. The incorporation of macromolecular polymers has been verified to be beneficial to alleviate the mechanical brittleness of pristine MXene films. However, the intercalation of a large amount of insulating macromolecules inevitably compromises their electrical conductivity. Inspired by wood, short-chained hemicellulose (xylo-oligosaccharide) acts as a molecular binder to bind adjacent MXene nanosheets together; this work shows that this can significantly enhance the mechanical properties without introducing a large number of insulating phases. As a result, MXene-hemicellulose films can integrate a high electrical conductivity (64,300 S m-1) and a high mechanical strength (125 MPa) simultaneously, making them capable of being high-performance electrode materials for supercapacitors and humidity sensors. This work proposes an alternative method to manufacture robust MXene-based structural materials for multifunctional applications.


Assuntos
Polissacarídeos , Eletrodos , Condutividade Elétrica
18.
ACS Appl Mater Interfaces ; 14(28): 31942-31950, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35795893

RESUMO

Lithium-sulfur (Li-S) batteries hold great promise for new-generation energy storage technologies owing to their overwhelming energy density. However, the poor conductivity of active sulfur and the shuttle effect limit their widespread use. Herein, a carbon cloth decorated with thiol-containing UiO-66 nanoparticles (CC@UiO-66(SH)2) was developed to substitute the traditional interlayer and current collector for Li-S batteries. One side of CC@UiO-66(SH)2 acts as a current collector to load active materials, while the other side serves as an interlayer to further restrain polysulfide shuttling. This two-in-one integrated architecture endows the sulfur cathode with fast electron/ion transport and efficient chemical confinement of polysulfides. More importantly, rich thiol groups in the pores of UiO-66(SH)2 serve to tether polysulfides by both covalent interactions and lithium bonding. Therefore, the Li-S battery equipped with this integrated interlayer-current collector not only delivers an enhanced specific capability (1209 mAh g-1 at 0.1 C) but also exhibits prominent cycling stability (an attenuation rate of 0.037% per cycle for 1000 cycles at 1 C). Meanwhile, the battery achieves a high discharge capacity of 795 mAh g-1 at a sulfur loading of 3.83 mg cm-2. The new metal-organic framework (MOF)-based electrode material reported in this study undoubtedly provides insights into the exploration of functional MOFs for robust Li-S batteries.

19.
Sci Bull (Beijing) ; 67(18): 1882-1889, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546302

RESUMO

Aqueous zinc-ion batteries (AZIBs) are promising for large-scale energy storage, but their development is plagued by inadequate cycle life. Here, for the first time, we reveal an unusual phenomenon of cathodic underpotential deposition (UPD) of Zn, which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs. Combining experimental and theoretical simulation approaches, we propose that the UPD process agrees with a two-dimensional nucleation and growth model, following a thermodynamically feasible mechanism. Furthermore, the universality of Zn UPD is identified in systems, including VO2//Zn, TiO2//Zn, and SnO2//Zn. In practice, we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-of-discharge voltage. This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.

20.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31713587

RESUMO

Mounting studies have revealed that long non-coding RNA (lncRNA) deleted in lymphocytic leukemia 1 (DLEU1) positively regulated the initiation and development of various human malignant tumors. Nevertheless, the function and mechanism of DLEU1 in human glioblastoma multiforme (GBM) remain elusive and ill-defined. The current study was designed to highlight the functional role and disclose the underlying molecular mechanism by which DLEU1 regulated GBM development. We found that DLEU1 was up-regulated in GBM and DLEU1 knockdown significantly inhibited GBM cell proliferation and induced apoptosis. As predicted by bioinformatics analysis and validated in mechanistic assays, SP1 could bind to the promoter region of DLEU1 to activate DLEU1 transcription. Additionally, miR-4429 was verified as a target gene of DLEU1 and negatively modulated by DLEU1. More importantly, miR-4429 overexpression repressed the mRNA and protein levels of SP1 via binding to the 3'UTR of SP1. Overexpression of SP1 or miR-4429 inhibitor could partly abolish the effect of DLEU1 knockdown on cell viability and apoptosis in GBM. Accordingly, our experimental data revealed that SP1-DLEU1-miR-4429 formed a feedback loop to promote GBM development, providing a new evidence for the role of DLEU1 in GBM.


Assuntos
Glioblastoma/genética , MicroRNAs/genética , Fator de Transcrição Sp1/genética , Proteínas Supressoras de Tumor/genética , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA