Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Transl Med ; 21(1): 173, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870952

RESUMO

BACKGROUND: Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD: A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS: For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iß levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS: The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Atrofia Muscular , Diferenciação Celular , Fibras Musculares Esqueléticas
2.
Cell Physiol Biochem ; 48(2): 433-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016789

RESUMO

BACKGROUND/AIMS: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. METHODS: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). RESULTS: VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. CONCLUSION: VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.


Assuntos
Infarto do Miocárdio/terapia , Estimulação do Nervo Vago , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Acetilcolina/análise , Acetilcolina/sangue , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
3.
Nanotechnology ; 28(44): 445502, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28825406

RESUMO

Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like 'Nano' and 'Perfect' spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.

4.
Front Pharmacol ; 14: 1144824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426814

RESUMO

Background: Even 3 years into the COVID-19 pandemic, questions remain about how to safely and effectively vaccinate vulnerable populations. A systematic analysis of the safety and efficacy of the COVID-19 vaccine in at-risk groups has not been conducted to date. Methods: This study involved a comprehensive search of PubMed, EMBASE, and Cochrane Central Controlled Trial Registry data through 12 July 2022. Post-vaccination outcomes included the number of humoral and cellular immune responders in vulnerable and healthy populations, antibody levels in humoral immune responders, and adverse events. Results: A total of 23 articles assessing 32 studies, were included. The levels of IgG (SMD = -1.82, 95% CI [-2.28, -1.35]), IgA (SMD = -0.37, 95% CI [-0.70, -0.03]), IgM (SMD = -0.94, 95% CI [-1.38, -0.51]), neutralizing antibodies (SMD = -1.37, 95% CI [-2.62, -0.11]), and T cells (SMD = -1.98, 95% CI [-3.44, -0.53]) were significantly lower in vulnerable than in healthy populations. The positive detection rates of IgG (OR = 0.05, 95% CI [0.02, 0.14]) and IgA (OR = 0.03, 95% CI [0.01, 0.11]) antibodies and the cellular immune response rates (OR = 0.20, 95% CI [0.09, 0.45]) were also lower in the vulnerable populations. There were no statistically significant differences in fever (OR = 2.53, 95% CI [0.11, 60.86]), chills (OR = 2.03, 95% CI [0.08, 53.85]), myalgia (OR = 10.31, 95% CI [0.56, 191.08]), local pain at the injection site (OR = 17.83, 95% CI [0.32, 989.06]), headache (OR = 53.57, 95% CI [3.21, 892.79]), tenderness (OR = 2.68, 95% CI [0.49, 14.73]), and fatigue (OR = 22.89, 95% CI [0.45, 1164.22]) between the vulnerable and healthy populations. Conclusion: Seroconversion rates after COVID-19 vaccination were generally worse in the vulnerable than healthy populations, but there was no difference in adverse events. Patients with hematological cancers had the lowest IgG antibody levels of all the vulnerable populations, so closer attention to these patients is recommended. Subjects who received the combined vaccine had higher antibody levels than those who received the single vaccine.

5.
ESC Heart Fail ; 10(6): 3311-3329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641543

RESUMO

AIMS: We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS: Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1ß and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1ß and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS: VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.


Assuntos
Infarto do Miocárdio , Estimulação do Nervo Vago , Ratos , Humanos , Camundongos , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Acetilcolina , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa , Mecamilamina , Interleucina-6 , Fosfatidilinositol 3-Quinases , Células Estromais/metabolismo , Células Estromais/patologia , Derivados da Atropina
6.
Sci Rep ; 13(1): 436, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624121

RESUMO

We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.


Assuntos
Fibras Musculares Esqueléticas , Transdução de Sinais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , RNA Interferente Pequeno/metabolismo
7.
Stem Cell Res Ther ; 10(1): 70, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819239

RESUMO

AIM: The objective of this study is to determine if exuberant sympathetic nerve activity is involved in muscle satellite cell differentiation and myoblast fusion. METHODS AND RESULTS: By using immunoassaying and western blot analyses, we found that ß1 and ß2-adrenergic receptors (AdR) were expressed in C2C12 cells. The differentiated satellite cells exhibited an increased expression of ß2-AdR, as compared with the proliferating cells. Continuous exposure of isoprenaline (ISO), a ß-AdR agonist, delayed C2C12 cell differentiation, and myoblast fusion in time- and dose-dependent manner. ISO also increased short myotube numbers while decreasing long myotube numbers, consistent with the greater reduction in MyHC1, MyHC2a, and MyHC2x expression. Moreover, continuous exposure of ISO gradually decreased the ratio of PKA RI/RII, and PKA RI activator efficiently reversed the ISO effect on C2C12 cell differentiation and myoblast fusion while PKA inhibitor H-89 deteriorated the effects. Continuous single-dose ISO increased ß1-AdR expression in C2C12 cells. More importantly, the cells showed enhanced phospho-ERK1/2 levels, resulting in increasing phospho-ß2-AdR levels while decreasing ß2-AdR levels, and the specific effects could be abolished by ERK1/2 inhibitor. Furthermore, continuous exposure of ISO induced FOXO1 nuclear translocation and increased the levels of FOXO1 in nuclear extracts while reducing pAKT, p-p38MAPK, and pFOXO1 levels. Conversely, blockade of ERK1/2 signaling partially abrogated ISO effects on AKT, p38MAPK, and FOXO1signaling, which partially restored C2C12 cell differentiation and myoblast fusion, leading to an increase in the numbers of medium myotube along with the increased expression of MyHC1 and MyHC2a. CONCLUSION: Continuous exposure of ISO impedes satellite cell differentiation and myoblast fusion, at least in part, through PKA-ERK1/2-FOXO1 signaling pathways, which were associated with the reduced ß2-AdR and increased ß1-AdR levels.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Diferenciação Celular/efeitos dos fármacos , Isoproterenol/farmacologia , Mioblastos/efeitos dos fármacos , Animais , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
8.
Nanoscale Res Lett ; 13(1): 309, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284048

RESUMO

For effective application of electrospinning and electrospun fibrous meshes in wound dressing, we have in situ electrospun poly(vinyl pyrrolidone)/iodine (PVP/I), PVP/poly(vinyl pyrrolidone)-iodine (PVPI) complex, and poly(vinyl butyral) (PVB)/PVPI solutions into fibrous membranes by a handheld electrospinning apparatus. The morphologies of the electrospun fibers were examined by SEM, and the hydrophobicity, gas permeability, and antibacterial properties of the as-spun meshes were also investigated. The flexibility and feasibility of in situ electrospinning PVP/I, PVP/PVPI, and PVB/PVPI membranes, as well as the excellent gas permeabilities and antibacterial properties of the as-spun meshes, promised their potential applications in wound healing.

9.
Biomed Rep ; 2(3): 378-383, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24748978

RESUMO

A number of published studies investigated the association between interleukin-1α (IL-1α) -899 (+4845) C→T polymorphism and susceptibility to aggressive periodontitis (AgP). However, the results from different studies are controversial. This study was conducted to further investigate the association between IL-1α -899 (+4845) C→T polymorphism and AgP using a meta-analysis. A search was conducted through PubMed up to May 1, 2013 and a total of 19 relevant case-control studies were identified. The results of this meta-analysis demonstrated that IL-1α -899 (+4845) C→T polymorphism is not associated with susceptibility to AgP under allele T vs. C [odds ratio (OR)=1.00, 95% confidence interval (CI): 0.88-1.14, P=0.98; I2=28.86%] or allele A vs. C comparison (OR=0.99, 95% CI: 0.85-1.14, P=0.85; I2=33.66%). The subgroup analyses based on ethnicity, source of controls and Hardy-Weinberg equilibrium (HWE) also revealed no such association. There existed a weak publication bias (Egger's test P=0.02). In conclusion, based on the currently available evidence, there is no association between IL-1α -899 (+4845) C→T polymorphism and susceptibility to AgP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA