Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Resist Updat ; 76: 101102, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936006

RESUMO

Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.

2.
Drug Resist Updat ; 72: 101033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157648

RESUMO

Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Peróxido de Hidrogênio , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Small ; : e2310118, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506599

RESUMO

The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2 ), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+ ), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.

4.
Chembiochem ; 25(12): e202400105, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38639074

RESUMO

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.


Assuntos
Alumínio , Antineoplásicos , Senescência Celular , Etilenodiaminas , Platina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Senescência Celular/efeitos dos fármacos , Platina/química , Platina/farmacologia , Alumínio/química , Alumínio/farmacologia , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química
5.
J Nanobiotechnology ; 22(1): 166, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610032

RESUMO

Treatment for inflammatory bowel disease (IBD) is challenging since current anti-inflammatory and immunosuppressive therapies do not address the underlying causes of the illness, which include increased levels of reactive oxygen species (ROS) and dysbiosis of the gut commensal microbiota. Additionally, these treatments often have systemic off-target effects and adverse side effects. In this study, we have developed a prebiotic yeast ß-glucan nanocomplex coated with bio-adhesive polydopamine (YBNs@PDA) to effectively prolong their retention time in the gastrointestinal (GI) tract. The oral administration of YBNs@PDA restored the epithelium barriers, reduced ROS levels, and minimized systemic drug exposure while improved therapeutic efficacy in an acute colitis mouse model. Furthermore, 16S ribosomal RNA genes sequencing demonstrated a higher richness and diversity in gut microflora composition following the treatments. In particular, YBNs@PDA markedly augmented the abundance of Lachnospiraceae NK4A136 and Bifidobacterium, both of which are probiotics with crucial roles in relieving colitis via retaining gut homeostasis. Cumulatively, these results demonstrate that the potential of YBNs@PDA as a novel drug-free, ROS-scavenging and gut microbiota regulation nanoplatform for the treatment of GI disorders.


Assuntos
Colite , Microbioma Gastrointestinal , Indóis , Doenças Inflamatórias Intestinais , Polímeros , Animais , Camundongos , Saccharomyces cerevisiae , Espécies Reativas de Oxigênio , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Administração Oral
6.
Angew Chem Int Ed Engl ; 63(28): e202404822, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687056

RESUMO

Autophagy could play suppressing role in cancer therapy by facilitating release of tumor antigens from dying cells and inducing immunogenic cell death (ICD). Therefore, discovery and rational design of more effective inducers of cytotoxic autophagy is expected to develop new strategies for finding innovative drugs for precise and successful cancer treatment. Herein, we develop MoO3-x nanowires (MoO3-x NWs) with high oxygen vacancy and strong photothermal responsivity to ablate tumors through hyperthermia, thus promote the induction of cytotoxic autophagy and severe ICD. As expected, the combination of MoO3-x NWs and photothermal therapy (PTT) effectively induces autophagy to promote the release of tumor antigens from the ablated cells, and induces the maturation and antigen presentation of dendritic cells (DCs), subsequently activates cytotoxic T lymphocytes (CTLs)-mediated adaptive immunity. Furthermore, the combination treatment of MoO3-x NWs with immune checkpoint blockade of PD-1 could promote the tumor-associated macrophages (TAMs) polarization into tumor-killing M1 macrophages, inhibit infiltration of Treg cells at tumor sites, and alleviate immunosuppression in the tumor microenvironment, finally intensify the anti-tumor activity in vivo. This study provides a strategy and preliminary elucidation of the mechanism of using MoO3-x nanowires with high oxygen vacancy to induce autophagy and thus enhance photothermal immunotherapy.


Assuntos
Autofagia , Imunoterapia , Molibdênio , Nanofios , Autofagia/efeitos dos fármacos , Nanofios/química , Camundongos , Animais , Molibdênio/química , Molibdênio/farmacologia , Óxidos/química , Óxidos/farmacologia , Terapia Fototérmica , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Fototerapia , Microambiente Tumoral/efeitos dos fármacos
7.
J Am Chem Soc ; 145(22): 12193-12205, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37208802

RESUMO

Selenoprotein plays a crucial role in immune cells and inflammatory regulation. However, as a protein drug that is easily denatured or degraded in the acidic environment of the stomach, efficient oral delivery of selenoprotein is a great challenge. Herein, we innovated an oral hydrogel microbeads-based biochemical strategy that can in situ synthesize selenoproteins, therefore bypassing the necessity and harsh conditions for oral protein delivery while effectively generating selenoproteins for therapeutic applications. The hydrogel microbeads were synthesized by coating hyaluronic acid-modified selenium nanoparticles with a protective shell of calcium alginate (SA) hydrogel. We tested this strategy in mice with inflammatory bowel disease (IBD), one of the most representative diseases related to intestinal immunity and microbiota. Our results revealed that hydrogel microbeads-mediated in situ synthesis of selenoproteins could prominently reduce proinflammatory cytokines secretion and mediate immune cells (e.g., reduce neutrophils and monocytes and increase immune regulatory T cells) to effectively relieve colitis-associated symptoms. This strategy was also able to regulate gut microbiota composition (increase probiotics abundance and suppress detrimental communities) to maintain intestinal homeostasis. Considering intestinal immunity and microbiota widely associated with cancers, infections, inflammations, etc., this in situ selenoprotein synthesis strategy might also be possibly applied to broadly tackle various diseases.


Assuntos
Hidrogéis , Microbiota , Animais , Camundongos , Microesferas , Selenoproteínas/metabolismo , Inflamação
8.
Horm Metab Res ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056496

RESUMO

The influence of metabolic syndrome (MetS) on long-term prognosis of patients with myocardial infarction (MI), the most severe type of coronary artery disease, remains not fully determined. This systematic review and meta-analysis were conducted to investigate the association between MetS and long-term clinical outcomes of patients with MI. A systematic search of Medline, Web of Science, and Embase databases from inception to June 25, 2023, was conducted to obtain eligible studies. Only studies with follow-up duration for at least one year were considered. A random-effects model was utilized to pool the results, accounting for heterogeneity. Ten observational studies were included, which included 33 197 patients with MI. Among them, 17 244 (51.9%) were with MetS at baseline. During a follow-up duration of 12 to 48 months (mean: 22.5 months), patients with MetS were associated with higher incidence of major adverse cardiovascular events [risk ratio (RR): 1.35. 95% confidence interval (CI): 1.19 to 1.54, p<0.001; I2=64%] and all-cause deaths (RR: 1.34, 95% CI: 1.18 to 1.52, p<0.001; I2=23%), as compared to those without MetS at baseline. Subgroup analyses showed that the results were not significantly affected by study characteristics such as study country, design, type of MI, mean age of the patients, treatment with percutaneous coronary intervention, follow-up durations, or study quality scores (p for subgroup difference all>0.05). In patients with MI, MetS may be a risk factor of poor long-term prognosis.

9.
J Nanobiotechnology ; 21(1): 96, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935493

RESUMO

The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Selênio , Humanos , Selênio/uso terapêutico , Selênio/metabolismo , Medicina de Precisão , Nanomedicina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Antioxidantes/metabolismo , Nanopartículas/uso terapêutico , Portadores de Fármacos
10.
J Nanobiotechnology ; 21(1): 90, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922836

RESUMO

BACKGROUND: Radiotherapy is a commonly used tool in clinical practice to treat solid tumors. However, due to the unique microenvironment inside the tumor, such as high levels of GSH, overexpressed H2O2 and hypoxia, these factors can seriously affect the effectiveness of radiotherapy. RESULTS: Therefore, to further improve the efficiency of radiotherapy, a core-shell nanocomposite CeO2-MnO2 is designed as a novel radiosensitizer that can modulate the tumor microenvironment (TME) and thus improve the efficacy of radiation therapy. CeO2-MnO2 can act as a radiosensitizer to enhance X-ray absorption at the tumor site while triggering the response behavior associated with the tumor microenvironment. According to in vivo and in vitro experiments, the nanoparticles aggravate the killing effect on tumor cells by generating large amounts of ROS and disrupting the redox balance. In this process, the outer layer of MnO2 reacts with GSH and H2O2 in the tumor microenvironment to generate ROS and release oxygen, thus alleviating the hypoxic condition in the tumor area. Meanwhile, the manganese ions produced by degradation can enhance T1-weighted magnetic resonance imaging (MRI). In addition, CeO2-MnO2, due to its high atomic number oxide CeO2, releases a large number of electrons under the effect of radiotherapy, which further reacts with intracellular molecules to produce reactive oxygen species and enhances the killing effect on tumor cells, thus having the effect of radiotherapy sensitization. In conclusion, the nanomaterial CeO2-MnO2, as a novel radiosensitizer, greatly improves the efficiency of cancer radiation therapy by improving the lack of oxygen in tumor and responding to the tumor microenvironment, providing an effective strategy for the construction of nanosystem with radiosensitizing function. CONCLUSION: In conclusion, the nanomaterial CeO2-MnO2, as a novel radiosensitizer, greatly improves the efficiency of cancer radiation therapy by improving the lack of oxygen in tumor and responding to the tumor microenvironment, providing an effective strategy for the construction of nanosystems with radiosensitizing function.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Microambiente Tumoral , Compostos de Manganês , Óxidos/uso terapêutico , Hipóxia/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Oxigênio , Nanopartículas/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Imageamento por Ressonância Magnética , Linhagem Celular Tumoral , Fotoquimioterapia/métodos
11.
J Am Chem Soc ; 144(45): 20825-20833, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318653

RESUMO

Thioredoxin reductase (TrxR) is highly overexpressed in cancer cells to promote malignant tumor survival. Designing drugs that inhibit TrxR activity is a promising approach to achieve highly effective cancer chemotherapy. However, the selectivity of TrxR inhibitors continue to be a challenge for scientists. In this work, we demonstrate a new strategy to selectively inhibit TrxR through constructing electrophilic center -N-Se(δ+)-N- by using the polarization effect of the selenium atom. The constructed electrophilic center interacts noncovalently with the active motif of TrxR to avoid the interference of other residues in human tissues, thereby selectively inhibiting intracellular TrxR activity. Computational and experimental analysis confirms that the formed electrophilic selenium center preferred to attack the SeC residues in the redox active center of TrxR at the 498 site through strong noncovalent interactions. Both in vitro and in vivo experimental results confirmed that this strategy can significantly improve the anticancer effect. This study may provide a novel route to design highly effective and selective chemotherapeutic drugs.


Assuntos
Neoplasias , Selênio , Humanos , Tiorredoxina Dissulfeto Redutase , Selênio/farmacologia , Neoplasias/tratamento farmacológico , Oxirredução , Antioxidantes
12.
J Nanobiotechnology ; 20(1): 104, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246149

RESUMO

BACKGROUND: Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS: A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS: The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS: Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.


Assuntos
Nanopartículas , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Hipóxia/diagnóstico por imagem , Hipóxia/tratamento farmacológico , Imageamento por Ressonância Magnética , Nanopartículas/uso terapêutico , Oxigênio/farmacologia , Medicina de Precisão , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
13.
J Nanobiotechnology ; 20(1): 278, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701758

RESUMO

BACKGROUND: As Traditional Chinese Medicine (TCM) drugs, Huangqi and Danshen are always applied in combination for spinal cord injury (SCI) treatment based on the compatibility theory of TCM. Astragalus Polysaccharidesis (APS) and Tanshinone IIA (TSIIA) are the main active ingredients of Huangqi and Danshen, and they both possess neuroprotective effects through antioxidant activities. However, low solubility and poor bioavailability have greatly limited their application. In recent years, selenium nanoparticles (SeNPs) have drawn enormous attention as potential delivery carrier for antioxidant drugs. RESULTS: In this study, TCM active ingredients-based SeNPs surface decorated with APS and loaded with TSIIA (TSIIA@SeNPs-APS) were successfully synthesized under the guidance of the compatibility theory of TCM. Such design improved the bioavailability of APS and TSIIA with the benefits of high stability, efficient delivery and highly therapeutic efficacy for SCI treatment illustrated by an improvement of the antioxidant protective effects of APS and TSIIA. The in vivo experiments indicated that TSIIA@SeNPs-APS displayed high efficiency of cellular uptake and long retention time in PC12 cells. Furthermore, TSIIA@SeNPs-APS had a satisfactory protective effect against oxidative stress-induced cytotoxicity in PC12 cells by inhibiting excessive reactive oxygen species (ROS) production, so as to alleviate mitochondrial dysfunction to reduce cell apoptosis and S phase cell cycle arrest, and finally promote cell survival. The in vivo experiments indicated that TSIIA@SeNPs-APS can protect spinal cord neurons of SCI rats by enhancing GSH-Px activity and decreasing MDA content, which was possibly via the metabolism of TSIIA@SeNPs-APS to SeCys2 and regulating antioxidant selenoproteins to resist oxidative stress-induced damage. CONCLUSIONS: TSIIA@SeNPs-APS exhibited promising therapeutic effects in the anti-oxidation therapy of SCI, which paved the way for developing the synergistic effect of TCM active ingredients by nanotechnology to improve the efficacy as well as establishing novel treatments for oxidative stress-related diseases associated with Se metabolism and selenoproteins regulation.


Assuntos
Nanopartículas , Selênio , Traumatismos da Medula Espinal , Animais , Antioxidantes , Medicina Tradicional Chinesa , Ratos , Selênio/farmacologia , Selenoproteínas , Traumatismos da Medula Espinal/tratamento farmacológico
14.
J Nanobiotechnology ; 20(1): 401, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064356

RESUMO

BACKGROUND: Cancer cell membrane-camouflaged nanotechnology for metal complex can enhance its biocompatibility and extend the effective circulation time in body. The ruthenium polypyridyl complex (RuPOP) has extensive antitumor activity, but it still has disadvantages such as poor biocompatibility, lack of targeting, and being easily metabolized by the organism. Cancer cell membranes retain a large number of surface antigens and tumor adhesion molecules CD47, which can be used to camouflage the metal complex and give it tumor homing ability and high biocompatibility. RESULTS: Therefore, this study provides an electrostatic adsorption method, which uses the electrostatic interaction of positive and negative charges between RuPOP and cell membranes to construct a cancer cell membrane-camouflaged nano-platform (RuPOP@CM). Interestingly, RuPOP@CM maintains the expression of surface antigens and tumor adhesion molecules, which can inhibit the phagocytosis of macrophage, reduce the clearance rate of RuPOP, and increase effective circulation time, thus enhancing the accumulation in tumor sites. Besides, RuPOP@CM can enhance the activity of cellular immune response and promote the production of inflammatory cytokines including TNF-α, IL-12 and IL-6, which is of great significance in treatment of tumor. On the other hand, RuPOP@MCM can produce intracellular ROS overproduction, thereby accelerating the apoptosis and cell cycle arrest of tumor cells to play an excellent antitumor effect in vitro and in vivo. CONCLUSION: In brief, engineering cancer cell membrane-camouflaged metal complex is a potential strategy to improve its biocompatibility, biological safety and antitumor effects.


Assuntos
Neoplasias da Mama , Rutênio , Antígenos de Superfície/metabolismo , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Feminino , Humanos
15.
Small ; 17(41): e2102102, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510724

RESUMO

Neuroinflammation is critically involved in the repair of spinal cord injury (SCI), and macrophages associated with inflammation propel the degeneration or recovery in the pathological process. Currently, efforts have been focused on obtaining efficient therapeutic anti-inflammatory drugs to treat SCI. However, these drugs are still unable to penetrate the blood spinal cord barrier and lack the ability to target lesion areas, resulting in unsatisfactory clinical efficacy. Herein, a polymer-based nanodrug delivery system is constructed to enhance the targeting ability. Because of increased expression of matrix metalloproteinases (MMPs) in injured site after SCI, MMP-responsive molecule, activated cell-penetrating peptides (ACPP), is introduced into the biocompatible polymer PLGA-PEI-mPEG (PPP) to endow the nanoparticles with the ability for diseased tissue-targeting. Meanwhile, etanercept (ET), a clinical anti-inflammation treatment medicine, is loaded on the polymer to regulate the polarization of macrophages, and promote locomotor recovery. The results show that PPP-ACPP nanoparticles possess satisfactory lesion targeting effects. Through inhibited consequential production of proinflammation cytokines and promoted anti-inflammation cytokines, ET@PPP-ACPP could decrease the percentage of M1 macrophages and increase M2 macrophages. As expected, ET@PPP-ACPP accumulates in lesion area and achieves effective treatment of SCI; this confirmed the potential of nano-drug loading systems in SCI immunotherapy.


Assuntos
Traumatismos da Medula Espinal , Anti-Inflamatórios/uso terapêutico , Humanos , Imunoterapia , Macrófagos , Metaloproteinases da Matriz/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico
16.
Nanotechnology ; 32(10): 105101, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33318342

RESUMO

A fluorescent metal-organic framework (EuMOF) based on Eu3+ nodes coordinated by 1,1':2',1″-terphenyl-4,4',4″,5'-tetracarboxylate (H4ttca) linkers has been developed as a trackable carrier with inherent fluorescence. Since Fe3O4 nanoparticles (NPs) have great value in versatile applications in vivo/vitro including imaging, cell isolation and magnetic responsivity, Fe3O4 NPs were introduced in the EuMOF composites to enhance the multifunctionalities. It has been demonstrated that the Fe3O4 NPs functionalized EuMOF composites have capability for tumor cell retrieval from matrix followed by anti-cancer drug release, which is promising to be developed as an integrated drug screening platform. Cytotoxicity was evaluated and the EuMOF-based nanocomposite exhibits significantly greater (up to 4x) biocompatibility tested on MCF-7 cells than the Zn-based MOF (the same ligand). Moreover, the EuMOF nanocarrier is capable of loading and releasing anti-cancer drugs in a controllable manner, where Doxorubicin (Dox) functionalized as a payload. Controllable release was successfully achieved after incubation with tumor cells and endocytosis analysis was obtained through the fluorescent imaging which offers monitoring of apoptosis after cargo release. Overall, fluorescent/magnetic properties of EuMOF has been investigated systematically, making it easy to be tracked in potential in vivo/vitro applications. As a drug carrier, it is biocompatible and shows highly efficient drug loading within 5 min, holding great promise in potential therapeutic delivery and other clinical applications.

17.
J Nanobiotechnology ; 19(1): 443, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949202

RESUMO

Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.


Assuntos
Gases/uso terapêutico , Raios Infravermelhos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Gases/química , Gases/metabolismo , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Terapia Fototérmica/métodos , Pró-Fármacos/química
18.
J Nanobiotechnology ; 19(1): 67, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663532

RESUMO

BACKGROUND: Nanoparticles assembled from food-grade calcium carbonate have attracted attention because of their biocompatibility, digestibility, particle and surface features (such as size, surface area, and partial wettability), and stimuli-responsiveness offered by their acid-labile nature. RESULTS: Herein, a type of edible oil-in-water Pickering emulsion was structured by calcium carbonate nanoparticles (CaCO3 NPs; mean particle size: 80 nm) and medium-chain triglyceride (MCT) for delivery of lipophilic drugs and simultaneous oral supplementation of calcium. The microstructure of the as-made CaCO3 NPs stabilized Pickering emulsion can be controlled by varying the particle concentration (c) and oil volume fraction (φ). The emulsification stabilizing capability of the CaCO3 NPs also favored the formation of high internal phase emulsion at a high φ of 0.7-0.8 with excellent emulsion stability at room temperature and at 4 °C, thus protecting the encapsulated lipophilic bioactive, vitamin D3 (VD3), against degradation. Interestingly, the structured CaCO3 NP-based Pickering emulsion displayed acid-trigged demulsification because of the disintegration of the CaCO3 NPs into Ca2+ in a simulated gastric environment, followed by efficient lipolysis of the lipid in simulated intestinal fluid. With the encapsulation and delivery of the emulsion, VD3 exhibited satisfying bioavailability after simulated gastrointestinal digestion. CONCLUSIONS: Taken together, the rationally designed CaCO3 NP emulsion system holds potential as a calcium-fortified formulation for food, pharmaceutical and biomedical applications.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Cálcio/química , Cálcio/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Animais , Colecalciferol , Digestão , Emulsões/química , Feminino , Trato Gastrointestinal , Camundongos , Camundongos Endogâmicos ICR , Tamanho da Partícula , Molhabilidade
19.
J Nanobiotechnology ; 19(1): 393, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838048

RESUMO

Bladder cancer (BC) is a common malignancy in the genitourinary system and the current theranostic approaches are unsatisfactory. Sensitivity and specificity of current diagnosis methods are not ideal and high recurrence and progression rates after initial treatment indicate the urgent need for management improvements in clinic. Nanotechnology has been proposed as an effective method to improve theranosis efficiency for both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). For example, gold nanoparticles (AuNPs) have been developed for simple, fast and sensitive urinary sample test for bladder cancer diagnosis. Nanoparticles targeting bladder cancers can facilitate to distinguish the normal and abnormal bladder tissues during cystoscopy and thus help with the complete removal of malignant lesions. Both intravenous and intravesical agents can be modified by nanotechnology for targeted delivery, high anti-tumor efficiency and excellent tolerability, exhibiting encouraging potential in bladder cancer treatment. Photosensitizers and biological agents can also be delivered by nanotechnology, intermediating phototherapy and targeted therapy. The management of bladder cancer remained almost unchanged for decades with unsatisfactory effect. However, it is likely to change with the fast-developed nanotechnology. Herein we summarized the current utility of nanotechnology in bladder cancer diagnosis and treatment, providing insights for the future designing and discovering novel nanoparticles for bladder cancer management.


Assuntos
Nanopartículas , Nanomedicina Teranóstica , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia , Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
20.
J Nanobiotechnology ; 19(1): 201, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229725

RESUMO

BACKGROUND: The design of stable and biocompatible black phosphorus-based theranostic agents with high photothermal conversion efficiency and clear mechanism to realize MRI-guided precision photothermal therapy (PTT) is imminent. RESULTS: Herein, black phosphorus nanosheets (BPs) covalently with mono-dispersed and superparamagnetic ferrous selenide (FeSe2) to construct heteronanostructure nanoparticles modified with methoxy poly (Ethylene Glycol) (mPEG-NH2) to obtain good water solubility for MRI-guided photothermal tumor therapy is successfully designed. The mechanism reveals that the enhanced photothermal conversion achieved by BPs-FeSe2-PEG heteronanostructure is attributed to the effective separation of photoinduced carriers. Besides, through the formation of the P-Se bond, the oxidation degree of FeSe2 is weakened. The lone pair electrons on the surface of BPs are occupied, which reduces the exposure of lone pair electrons in air, leading to excellent stability of BPs-FeSe2-PEG. Furthermore, the BPs-FeSe2-PEG heteronanostructure could realize enhanced T2-weighted imaging due to the aggregation of FeSe2 on BPs and the formation of hydrogen bonds, thus providing accurate PTT guidance and generating hyperthermia to inhabit tumor growth under NIR laser with negligible toxicity in vivo. CONCLUSIONS: Collectively, this work offers an opportunity for fabricating BPs-based heteronanostructure nanomaterials that could simultaneously enhance photothermal conversion efficiency and photostability to realize MRI-guided cancer therapy.


Assuntos
Compostos Ferrosos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Fósforo/química , Fósforo/farmacologia , Terapia Fototérmica/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Hipertermia Induzida , Camundongos , Nanoestruturas , Fototerapia/métodos , Polietilenoglicóis/química , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA