Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; : e30470, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283276

RESUMO

BACKGROUND: We retrospectively investigated the role of neoadjuvant chemotherapy in low-risk patients with hepatoblastoma (HB) who underwent curative resection between February 2009 and December 2017. We also verified the feasibility of the risk stratification system to select the optimal patients for upfront surgery. PROCEDURE: We compared 5-year overall survival (OS) and event-free survival (EFS) between the upfront surgery (n = 26) and neoadjuvant chemotherapy (n = 104) groups at three oncology centers in Beijing, China. To reduce the effect of covariate imbalance, propensity score matching (PSM) was used. We explored whether preoperative chemotherapy affected surgical outcomes and identified the risk factors for events and death, including resection margin status, PRETreatment EXTent of disease stages, age, sex, pathology classification, and α-fetoprotein levels. RESULTS: The median follow-up period was 64 (interquartile range 60-72) months. After PSM, 22 pairs of patients were identified, and the patient characteristics were similar for all variables included in PSM. In the upfront surgery group, the 5-year EFS and OS rates were 81.8% and 86.3%, respectively. In the neoadjuvant chemotherapy group, the 5-year EFS and OS rates were 81.8% and 90.9%, respectively. No significant differences in EFS or OS were observed between the groups. Pathological classification was the only risk factor for death, disease progression, tumor recurrence, other tumors found during HB diagnosis, and death from any cause (p = .007 and .032, respectively). CONCLUSIONS: Upfront surgery achieved long-term disease control in low-risk patients with resectable HB, thus reduced the cumulative toxicity of platinum-based chemotherapy drugs.

2.
Ecotoxicol Environ Saf ; 236: 113454, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367887

RESUMO

Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and ß-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, ß-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.


Assuntos
Barreira Hematotesticular , beta Catenina , Animais , Caderinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcistinas/toxicidade , Ocludina/metabolismo
3.
Fetal Pediatr Pathol ; 41(4): 568-575, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33511891

RESUMO

ObjectiveWe compared the cross-sectional areas of the duodenum to the distal small intestine during early gestation to determine if there is a difference in age for recanalization.MethodsSerial sagittal sections of six fetuses of gestational age (GA) 8-10 weeks were examined morphologically to compare the degree of recanalization of the duodenum with to the more distal small intestine.ResultsAt GA 8-9 weeks, the duodenum had more epithelial plugs and vacuoles with no or narrower spaces compared to the distal small bowel. Quantitative assessment at GA 10 weeks showed that the cross-sectional area of the duodenal cavity was significantly less than the distal small bowel.ConclusionThe development and recanalization of vacuoles in the duodenum occurs later than the jejunum and ileum may be involved in the more frequent development of atresia/stenosis of the duodenum compared to more distal gastrointestinal tract.


Assuntos
Atresia Intestinal , Vacúolos , Constrição Patológica , Obstrução Duodenal , Duodeno , Feto , Humanos , Íleo , Lactente , Jejuno
4.
Environ Res ; 195: 110890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617868

RESUMO

Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.


Assuntos
Fígado , Microcistinas , Apoptose , Humanos , Microcistinas/toxicidade
5.
Environ Res ; 192: 110254, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991922

RESUMO

Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.


Assuntos
Toxinas Marinhas , Microcistinas , Animais , Apoptose , Feminino , Humanos , Masculino , Microcistinas/toxicidade , Estresse Oxidativo
6.
Ecotoxicol Environ Saf ; 213: 112066, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610944

RESUMO

As an emerging pollutant in the aquatic environment, microcystin-LR (MC-LR) can enter the body through multiple pathways, and then induce apoptosis and gonadal damage, affecting reproductive function. Previous studies focused on male reproductive toxicity induced by MC-LR neglecting its effects on females. The apoptotic signal-regulated kinase 1 (ASK1) is an upstream protein of P38/JNK pathway, closely associated with apoptosis and organ damage. However, the role of ASK1 in MC-LR-induced reproductive toxicity is unclear. Therefore, this study investigated the role of ASK1 in mouse ovarian injury and apoptosis induced by MC-LR. After MC-LR exposure, ASK1 expression in mouse ovarian granulosa cells was increased at the protein and mRNA levels, and decreased following pretreatment by antioxidant N-acetylcysteine, suggesting that MC-LR-induced oxidative stress has a regulatory role in ASK1 expression. Inhibition of ASK1 expression with siASK1 and NQDI-1 could effectively alleviate MC-LR-induced mitochondrial membrane potential damage and apoptosis in ovarian granulosa cells, as well as pathological damage, apoptosis and the decreased gonadal index in ovaries of C57BL/6 mice. Moreover, the P38/JNK pathway and downstream apoptosis-related proteins (P-P38, P-JNK, P-P53, Fas) and genes (MKK4, MKK3, Ddit3, Mef2c) were activated in vivo and vitro, but their activation was restrained after ASK1 inhibition. Data presented herein suggest that the ASK1-mediated P38/JNK pathway is involved in ovarian injury and apoptosis induced by MC-LR in mice. It is confirmed that ASK1 has an important role in MC-LR-induced ovarian injury, which provides new insights for preventing MCs-induced reproductive toxicity in females.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Feminino , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Ovário
7.
Ecotoxicol Environ Saf ; 227: 112919, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34715501

RESUMO

Microcystin-LR (MC-LR) is an intracellular toxin with multi-organ toxicity and the testis is one of its important target organs. Although there is increasing research on MC-LR in male reproductive toxicity, the association between DNA damage and autophagy induced by MC-LR in male germ cells are still unclear. Therefore, it is important to explore the mechanism of MC-LR-induced DNA damage and the role of the activated ATM/p53 signaling pathway in testicular toxicity. The present study showed that MC-LR exposure significantly reduced gonadal index and induced pathological damage of the testes in mice. In addition, MC-LR increased the oxidative stress-related indicator hydroxyl radical, accompanied by increased levels of DNA damage-related indicators gamma-H2AX, 8-hydroxy-2'-deoxyguanosine, the olive tail moment (OTM) and DNA content of comet tail (TailDNA%) in trailing cells. Moreover, MC-LR activated the ATM/p53 pathway by enhancing the phosphorylation levels of ATM, CHK2 and p53 proteins, and then led to cell autophagy, ultimately triggering disrupted testicular cell arrangement, reduced sperm count and spermatogenic cell shedding. Importantly, after pretreatment with the antioxidant NAC, the expression levels of DNA damage-related indicators and the extent of damage in male germ cells were significantly reduced. Furthermore, pretreatment with the ATM inhibitor KU55933 could reduce the occurrence of autophagy and mitigate testicular toxicity of MC-LR through inhibiting the activation of the ATM/p53 pathway. These results indicate that MC-LR-induced oxidative stress can activate the DNA damage-mediated ATM/p53 signalling pathway to induce autophagy in male germ cells. This study provides a novel insight to further clarify the reproductive toxicity caused by MC-LR and to protect male reproductive health.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Animais , Autofagia , Dano ao DNA , Células Germinativas/metabolismo , Masculino , Toxinas Marinhas , Camundongos , Microcistinas , Estresse Oxidativo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Environ Toxicol ; 35(8): 822-830, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32170997

RESUMO

Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide hepatotoxin produced by cyanobacteria. MicroRNA-122 (miR-122) is specifically expressed in the liver. This study focuses on the role of miR-122 in MC-LR-induced dysregulation of hepatic iron homeostasis in C57BL/6 mice. The thirty mice were randomly divided into five groups (Control, 12.5 µg/kg·BW MC-LR, 25 µg/kg·BW MC-LR, Negative control agomir and 25 µg/kg·BW MC-LR + miR-122 agomir). The results show that MC-LR decreases the expressions of miR-122, Hamp, and its related regulators, while increasing the content of hepatic iron and the expressions of FPN1 and Tmprss6. Furthermore, miR-122 agomir pretreatment improves MC-LR induced dysregulation of hepatic iron homeostasis by arousing the related regulators and reducing the expression of Tmprss6. These results suggest that miR-122 agomir can prevent the accumulation of hepatic iron induced by MC-LR, which may be related to the regulation of hepcidin by BMP/SMAD and IL-6/STAT signaling pathways.


Assuntos
Microcistinas/toxicidade , Testes de Toxicidade , Animais , Arginina , Hepcidinas , Homeostase , Ferro , Leucina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
9.
Environ Toxicol ; 35(2): 277-291, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31691492

RESUMO

Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide, produced by aquatic cyanobacteria such as microcystis, with strong reproductive toxicity which poses greater threat to the reproductive abilities of humans and animals. By exploring the role of trimethylation of histone H3 at lysine 4 (H3K4me3) and the role of oxidative stress in MC-LR-induced apoptosis in testicular Sertoli cells in Sprague-Dawley (SD) rats, this study indicated that MC-LR increased the expression levels of apoptosis-related genes by raising the levels of H3K4me3. 5'-Deoxy-5'-methylthioadenosine (MTA), the inhibitor of H3K4me3, reduced apoptosis, indicating for the first time that epigenetic modification is closely related to the testicular reproductive toxicity induced by MC-LR. MC-LR also induced oxidative stress by stimulating the generation of reactive oxygen species (ROS), and subsequently triggering mitochondria-mediated apoptotic pathway by decreasing mitochondrial membrane potential and increasing the levels of Bax, Bcl-2, Caspase-3, and so on. MC-LR-induced apoptosis of testicular cells could be decreased after pretreatment with oxidative stress inhibitor N-acetyl-cysteine (NAC). Furthermore, the pathological damage to mitochondria and testes were observed in SD rats. These results show that MC-LR can induce apoptosis by raising the levels of H3K4me3, and pretreatment with MTA can ameliorate the MC-LR-induced apoptosis of cocultured cells by lowering the levels of H3K4me3. Furthermore, NAC has a protective effect on MC-LR-induced apoptosis of testicular cells in SD rats by inhibiting the oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Epigênese Genética , Histonas/genética , Microcistinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Humanos , Masculino , Toxinas Marinhas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo
10.
Environ Res ; 176: 108575, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299621

RESUMO

Bisphenol A (BPA) is an industrial component commonly used in synthesis of polycarbonate plastics, epoxy resin and other polymer materials. Due to its mass productions and widespread applications, the presence of BPA is ubiquitous in the environment. BPA can enter the body via different ways such as digestive tract, respiratory tract and dermal tract. As an endocrine disruptor, BPA has estrogen-like and anti-androgen effects causing damages to different tissues and organs, including reproductive system, immune system and neuroendocrine system, etc. Recently, it has been shown that BPA could induce carcinogenesis and mutagenesis in animal models. Here, the underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms. The aim of this review is to compile the available current research data regarding BPA and provide an overview of the current status of BPA exposure and relevant health effects covering reproductive, developmental, metabolic, immuno, respiratory, hepatic and renal toxicity and carcinogenesis of BPA. This review provides comprehensive data of BPA toxicity on human health and related mechanisms. We also identify any missing data which should be addressed by further studies.


Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Fenóis/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Epigênese Genética , Humanos
11.
Environ Toxicol ; 34(10): 1074-1084, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31157505

RESUMO

Microcystin-LR (MC-LR), a potent endotoxin, can induce reproductive toxicity. In order to investigate the role and mechanisms of apoptosis (p53-dependent and mitochondrial pathways) of germ cells induced by MC-LR, the co-cultured primary Sertoli-germ cells from Sprague-Dawley rats were used for the experiments. Expression levels of proteins, genes, and mitochondrial membrane potential (MMP) were obtained after exposing co-cultured Sertoli-germ cells to MC-LR with or without the addition of the p53 inhibitor, pifithrin-α (PFT-α), and MMP inhibitor, cyclosporin A (CsA). Results indicated that MC-LR could activate p53-dependent pathway-associated proteins in Sertoli-germ cells, leading to a decrease in MMP (indicating the opening of mitochondrial permeability transition pore [mPTP] and the release of Cytochrome-c [Cyt-c]) from the mitochondria into the cytoplasm and eventually the induction of apoptosis. PFT-α inhibited the expression ofp53, ameliorated the MMP of the co-cultured Sertoli-germ cells, and prevented the release of Cyt-c from the mitochondria into the cytoplasm, which reduces the occurrence of apoptosis. Similarly, the decreased release of Cyt-c from the mitochondria into the cytoplasm and the declined level of apoptosis in Sertoli-germ cells induced by MC-LR were observed after the addition of CsA. These results indicated that the apoptosis of the co-cultured Sertoli-germ cells induced by MC-LR was mediated by the p53-dependent pathway, with the involvement of the opening of mPTP.


Assuntos
Células Germinativas/efeitos dos fármacos , Microcistinas/toxicidade , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células de Sertoli/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cocultura , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Toxinas Marinhas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley , Células de Sertoli/citologia , Células de Sertoli/metabolismo
12.
Sci Total Environ ; 918: 170543, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309369

RESUMO

Polychlorinated biphenyls (PCBs) are a class of endocrine-disrupting chemicals (EDCs) widely present in the environment. PCBs have been of concern due to their anti/estrogen-like effects, which make them more toxic to the female reproductive system. However, there is still a lack of systematic reviews on the reproductive toxicity of PCBs in females, so the adverse effects and mechanisms of PCBs on the female reproductive system were summarized in this paper. Our findings showed that PCBs are positively associated with lower pregnancy rate, hormone disruption, miscarriage and various reproductive diseases in women. In animal experiments, PCBs can damage the structure and function of the ovaries, uterus and oviducts. Also, PCBs could produce epigenetic effects and be transferred to the offspring through the maternal placenta, causing development retardation, malformation and death of embryos, and damage to organs of multiple generations. Furthermore, the mechanisms of PCBs-induced female reproductive toxicity mainly include receptor-mediated hormone disorders, oxidative stress, apoptosis, autophagy, and epigenetic modifications. Finally, we also present some directions for future research on the reproductive toxicity of PCBs. This detailed information provided a valuable reference for fully understanding the reproductive toxicity of PCBs.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Gravidez , Animais , Feminino , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Revisões Sistemáticas como Assunto , Reprodução , Estrogênios , Ovário , Poluentes Ambientais/análise
13.
Environ Int ; 188: 108771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805914

RESUMO

Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.


Assuntos
Apoptose , Camundongos Endogâmicos BALB C , Microcistinas , Piroptose , Espécies Reativas de Oxigênio , Espermatogênese , Microcistinas/toxicidade , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Piroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatozoides/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Nitrito de Sódio , Toxinas Marinhas , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
14.
Environ Pollut ; 349: 123929, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582190

RESUMO

Microcystin-LR (MC-LR) is a reproductive toxin produced by cyanobacteria in the aquatic environment and can be ingested by humans through drinking water and the food chain, posing a threat to human reproductive health. However, the toxic mechanisms and prospective interventions for MC-LR-induced ovarian dysfunction at environmental doses are unknown. The mulberry fruit is a traditional natural product of plant origin, with various pharmacological effects, such as antioxidant and anti-inflammatory effects. Here, mice were exposed to MC-LR (10, 100 µg/L) in drinking water for 90 days, during which mice were gavage 600 mg/kg/week of mulberry fruit extract (MFE). It was found that MC-LR can accumulate in mouse ovaries, causing sexual hormone disturbance, inflammatory infiltration, and ovarian pathological damage. Results from RNA-seq were shown that CCL2, a chemokine associated with inflammatory response, was significantly increased in mouse ovary after MC-LR exposure. Further investigation revealed that MC-LR exposure aggravates apoptosis of granulosa cells via the CCL2-CCR10 axis-mediated Jak/Stat pathway. Importantly, MFE can significantly ameliorate these ovarian dysfunction phenotypes by inhibiting the activation of the CCL2-CCR10 axis. This study broadened new insights into the ovarian toxicity of MC-LR and clarified the pharmacological effects of mulberry fruit on ovarian function protection.


Assuntos
Toxinas Marinhas , Microcistinas , Morus , Animais , Feminino , Microcistinas/toxicidade , Camundongos , Morus/química , Ovário/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Extratos Vegetais/farmacologia , Células da Granulosa/efeitos dos fármacos
15.
Environ Sci Pollut Res Int ; 30(35): 83113-83137, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37347330

RESUMO

Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experiments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing the identification procedure of EDCs.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Humanos , Hormônios
16.
Sci Total Environ ; 851(Pt 2): 158262, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029820

RESUMO

Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.


Assuntos
Disruptores Endócrinos , Humanos , Disruptores Endócrinos/toxicidade , Microcistinas/farmacologia , Sistema Endócrino , Hormônios , Reprodução
17.
J Agric Food Chem ; 70(35): 10907-10918, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36026589

RESUMO

Microcystin-leucine arginine (MC-LR), ubiquitous in water and food, is a threat to public health. In the present study, after C57BL/6J mice were fed with environmental concentrations of MC-LR (0, 1, 30, 60, 90, and 120 µg/L) for 6, 9, and 12 months, it was found that MC-LR could enter into mouse lung tissues and cause microstructural damage, as shown by western blotting and HE staining. Electron microscopy examination showed that MC-LR could damage the lung barrier by disruption of the tight junctions, which was confirmed by the decreased expression of tight junction markers, including Occludin, Claudin1, and ZO-1. In addition, MC-LR also increased the ubiquitination of Claudin1, indicating that MC-LR could disrupt tight junctions by promoting the degradation of Claudin1. Furthermore, MC-LR increased the levels of TNF-α and IL-6 in mouse lung tissues, leading to pneumonia. Importantly, pretreatment with PP2A activator D-erythro-sphingosine (DES) was found to significantly alleviate MC-LR-induced decrease of Occludin and Claudin1 by inhibiting the P-AKT/Snail pathway in vitro. Together, this study revealed that chronic exposure to MC-LR causes lung barrier damage, which involves PP2A activity inhibition and enhancement of Claudin1 ubiquitination. This study broadens the awareness of the toxic effects of MC-LR on the respiratory system, which has deep implications for public health.


Assuntos
Arginina , Leucina , Lesão Pulmonar , Microcistinas , Animais , Camundongos , Arginina/metabolismo , Arginina/toxicidade , Claudina-1/metabolismo , Leucina/metabolismo , Leucina/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Microcistinas/metabolismo , Microcistinas/toxicidade , Ocludina/metabolismo , Proteína Fosfatase 2/metabolismo , Ubiquitinação
18.
Inflammation ; 44(1): 160-173, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32856219

RESUMO

Acute pancreatitis (AP) is a dysfunctional pancreas disease marked by severe inflammation. Long non-coding RNAs (lncRNAs) involving in the regulation of inflammatory responses have been frequently mentioned. The purpose of this study was to ensure the function and action mode of lncRNA maternally expressed gene 3 (MEG3) in caerulein-induced AP cell model. HPDE cells were treated with caerulein to establish an AP model in vitro. The expression of MEG3, miR-195-5p, and fibroblast growth factor receptor 2 (FGFR2) was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay, respectively. The expression of CyclinD1, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (Bax), FGFR2, P65, phosphorylated P65 (p-P65), alpha inhibitor of nuclear factor kappa beta (NF-κB) (IκB-α), and phosphorylated IκB-α (p-IκB-α) at the protein level was quantified by western blot. The concentrations of tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were monitored by enzyme-linked immunosorbent assay (ELISA). The targeted relationship between miR-195-5p and MEG3 or FGFR2 was forecasted by the online software starBase v2.0 and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. As a result, the expression of MEG3 and FGFR2 was decreased in caerulein-induced HPDE cells, while the expression of miR-195-5p was increased. MEG3 overexpression inhibited cell apoptosis and inflammatory responses that were induced by caerulein. Mechanically, miR-195-5p was targeted by MEG3 and abolished the effects of MEG3 overexpression. FGFR2 was a target of miR-195-5p, and MEG3 regulated the expression of FGFR2 by sponging miR-195-5p. FGFR2 overexpression abolished miR-195-5p enrichment-aggravated inflammatory injuries. Moreover, the NF-κB signaling pathway was involved in the MEG3/miR-195-5p/FGFR2 axis. Collectively, MEG3 participates in caerulein-induced inflammatory injuries by targeting the miR-195-5p/FGFR2 regulatory axis via mediating the NF-κB pathway in HPDE cells.


Assuntos
Ceruletídeo/toxicidade , MicroRNAs/biossíntese , NF-kappa B/metabolismo , Pâncreas/metabolismo , RNA Longo não Codificante/biossíntese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , NF-kappa B/antagonistas & inibidores , Pâncreas/efeitos dos fármacos , Pâncreas/lesões , Pancreatite/induzido quimicamente , Pancreatite/metabolismo
19.
Food Chem Toxicol ; 147: 111911, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33290805

RESUMO

Microcystin-LR (MC-LR) is an emerging water pollutant produced by blooming cyanobacteria. It could be absorbed into human body via contaminated food and drinking water causing severe reproductive toxicity. Previous studies showed that MC-LR could regulate autophagy by inducing endoplasmic reticulum (ER) stress thereby causing female reproductive toxicity. However, the molecular mechanisms of MC-LR-induced autophagy remain to be elucidated. It is known that IRE1 and CaMKKß pathways are two important pathways involved in autophagy induced by ER stress. Hence, this study investigated the roles of both pathways in MC-LR-induced autophagy in mouse ovarian cells. The results showed that MC-LR significantly up-regulated the expression of autophagy marker proteins LC3Ⅱ and BECLIN1 and down-regulated the expression of P62 in vivo and in vitro. MC-LR-caused increase of autophagosomes could be observed in KK-1 cells by MDC staining. MC-LR induced the formation of autolysosomes as indicated by the overlap of LAMP1 and LC3. Meanwhile, MC-LR significantly activated the proteins in IRE1 pathway (IRE1, XBP1 and JNK) and in CaMKKß pathway (CaMKKß, AMPK, mTOR). Furthermore, MC-LR caused weight loss and ovarian histopathological damage in mice. In contrast, after the expression and function of IRE1 and CaMKKß were inhibited with siRNA in vitro and by inhibitors (4µ8C and STO-609, respectively) in vivo, the up-regulation of LC3Ⅱ and BECLIN1 and the degradation of P62 induced by MC-LR were significantly suppressed. MC-LR-induced autophagosomes in KK-1 cells and autolysosomes in mouse ovarian cells were also decreased. Moreover, the knockdown of IRE1 and CaMKKß relieved MC-LR-induced histopathological injury to mouse ovaries. These results indicated that MC-LR induced ovarian cell autophagy and ovarian injury via IRE1 and CaMKKß pathways. This study is the first study revealing the molecular mechanisms of MC-LR-induced autophagy of ovarian cells and providing new insights into the female reproductive toxicity of MC-LR.


Assuntos
Autofagia/efeitos dos fármacos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Proteínas de Membrana/metabolismo , Microcistinas/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Inibidores Enzimáticos/toxicidade , Feminino , Células da Granulosa/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Organismos Livres de Patógenos Específicos
20.
Zhonghua Xin Xue Guan Bing Za Zhi ; 38(3): 259-63, 2010 Mar.
Artigo em Zh | MEDLINE | ID: mdl-20450570

RESUMO

OBJECTIVE: To evaluate the impacts of Helicobacter pylori (H. pylori) infection on atherosclerosis and plasma lipid levels in high-cholesterol diet fed C57BL/6 mice. METHOD: Female C57BL/6 mice were randomly divided into 4 groups (n = 12 each): fed with normal chow diet (A), infected with H. pylori (B), fed with high-cholesterol diet (C) and infected with H. pylori and fed with high-cholesterol diet (D). After 52 weeks, plasma levels of lipids were measured and aortic atherosclerosis was observed. The ureA, ureC, cagA and vacA DNA were also detected by PCR in the aortic arteries. RESULT: (1) Prevalence of atherosclerosis was similar between group C and D (91.6% vs. 100%, P > 0.05) while there was no atherosclerosis in group A and B. H. pylori infected mice showed more obvious inflammation in gastric mucosa than mice without H. pylori infection. (2) The plasma levels of triglyceride, total cholesterol and LDL were higher and HDL was lower in group B, C and D than those in group A and in group D than in group C (all P < 0.05). (3) Roberts & Thompson scores and number of foam cells in plaques were significantly higher in group D compared with those in group C (all P < 0.05). (4) ureC DNA was detected in 5 out of 12 aortic arteries of mice in group D but not in group A, B and C. CONCLUSION: Our results suggested that H. pylori infection might enhance the atherosclerotic lesion formation in this mouse model.


Assuntos
Aterosclerose/microbiologia , Aterosclerose/patologia , Colesterol na Dieta/efeitos adversos , Infecções por Helicobacter/patologia , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Colesterol/sangue , DNA Bacteriano/análise , Feminino , Helicobacter pylori/genética , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Urease/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA