Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7970): 624-631, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344596

RESUMO

Loss of the Y chromosome (LOY) is observed in multiple cancer types, including 10-40% of bladder cancers1-6, but its clinical and biological significance is unknown. Here, using genomic and transcriptomic studies, we report that LOY correlates with poor prognoses in patients with bladder cancer. We performed in-depth studies of naturally occurring LOY mutant bladder cancer cells as well as those with targeted deletion of Y chromosome by CRISPR-Cas9. Y-positive (Y+) and Y-negative (Y-) tumours grew similarly in vitro, whereas Y- tumours were more aggressive than Y+ tumours in immune-competent hosts in a T cell-dependent manner. High-dimensional flow cytometric analyses demonstrated that Y- tumours promote striking dysfunction or exhaustion of CD8+ T cells in the tumour microenvironment. These findings were validated using single-nuclei RNA sequencing and spatial proteomic evaluation of human bladder cancers. Of note, compared with Y+ tumours, Y- tumours exhibited an increased response to anti-PD-1 immune checkpoint blockade therapy in both mice and patients with cancer. Together, these results demonstrate that cancer cells with LOY mutations alter T cell function, promoting T cell exhaustion and sensitizing them to PD-1-targeted immunotherapy. This work provides insights into the basic biology of LOY mutation and potential biomarkers for improving cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Deleção Cromossômica , Cromossomos Humanos Y , Evasão Tumoral , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromossomos Humanos Y/genética , Proteômica , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Perfilação da Expressão Gênica , Genômica , Prognóstico , Sistemas CRISPR-Cas , Edição de Genes , Técnicas In Vitro , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Citometria de Fluxo , Imunoterapia
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38145946

RESUMO

Metabolic plasticity enables cancer cells to meet divergent demands for tumorigenesis, metastasis and drug resistance. Landscape analysis of tumor metabolic plasticity spanning different cancer types, in particular, metabolic crosstalk within cell subpopulations, remains scarce. Therefore, we proposed a new in-silico framework, termed as MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to depict tumor metabolic plasticity based on transcriptome data. Next, we performed an extensive metabo-plastic analysis of over 6000 tumors comprising 13 cancer types. The metabolic plasticity within distinct cell subpopulations, particularly interplay with tumor microenvironment, were explored at single-cell resolution. Ultimately, the metabo-plastic events were screened out for multiple clinical applications via machine learning methods. The pilot research indicated that 6 out of 13 cancer types exhibited signs of the Warburg effect, implying its high reliability and robustness. Across 13 cancer types, high metabolic organized heterogeneity was found, and four metabo-plastic subtypes were determined, which link to distinct immune and metabolism patterns impacting prognosis. Moreover, MMP3C analysis of approximately 60 000 single cells of eight breast cancer patients unveiled several metabo-plastic events correlated to tumorigenesis, metastasis and immunosuppression. Notably, the metabolic features screened out by MMP3C are potential biomarkers for diagnosis, tumor classification and prognosis. MMP3C is a practical cross-platform tool to capture tumor metabolic plasticity, and our study unveiled a core set of metabo-plastic pairs among diverse cancer types, which provides bases toward improving response and overcoming resistance in cancer therapy.


Assuntos
Neoplasias da Mama , Transcriptoma , Humanos , Feminino , Reprodutibilidade dos Testes , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral
4.
Nature ; 573(7772): 96-101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462779

RESUMO

The viscoelasticity of the crosslinked semiflexible polymer networks-such as the internal cytoskeleton and the extracellular matrix-that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1-5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1-8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9-11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties.


Assuntos
Fenômenos Biomecânicos , Biopolímeros/química , Contagem de Células , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Coagulação Sanguínea , Linhagem Celular , Elasticidade , Eritrócitos/citologia , Fibrina/química , Fibroblastos/citologia , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Reologia
5.
Proc Natl Acad Sci U S A ; 119(15): e2116718119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394874

RESUMO

Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen­GAG cogels. We found significantly lower intensities of aligned collagen in collagen­GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.


Assuntos
Comunicação Celular , Matriz Extracelular , Glicosaminoglicanos , Fenômenos Biomecânicos , Fenômenos Fisiológicos Celulares , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Glicosaminoglicanos/metabolismo , Humanos , Neoplasias
6.
BMC Genomics ; 25(1): 67, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233751

RESUMO

BACKGROUND: Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS: In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS: The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.


Assuntos
Genoma de Planta , Secale , Secale/genética , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
7.
J Am Chem Soc ; 146(19): 13326-13335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693621

RESUMO

A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the µs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.

8.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654332

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Fator de Iniciação de Tradução Eucariótico 5A , Regulação Neoplásica da Expressão Gênica , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Espermidina , Fator de Transcrição 4 , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Camundongos , Animais , Espermidina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Adenosilmetionina Descarboxilase/metabolismo , Adenosilmetionina Descarboxilase/genética , Movimento Celular/genética , Metilação de DNA , Prognóstico , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética
9.
Pediatr Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961163

RESUMO

BACKGROUND: We sought to evaluate renal stiffness in children with hematuria and/or proteinuria using shear wave elastography (SWE) and to investigate the clinical value of renal stiffness in children with hematuria and/or proteinuria. METHODS: According to the results of urinary occult blood and urinary protein tests, 349 pediatric patients were categorized into one of four groups: pure hematuria (HU), pure proteinuria (PU), concomitant hematuria and proteinuria (HUPU), or control (non-HUPU). Patient demographic data, laboratory test results, and renal ultrasound data were collected. RESULTS: There were significant differences in cortical/medullary elasticity among the four groups (the most sensitive cutoff value between HU and PU was 1.72) (P < 0.05). We found that hematuria and proteinuria interacted with renal cortical elasticity (P < 0.05) but that hematuria and proteinuria did not interact with renal medullary elasticity or cortical/medullary elasticity (P > 0.05). Renal elasticity values correlated with sex, age, body surface area, body mass index, qualitative urinary protein, urine N-acetyl-ß-D-glucosaminidase, 24-hour urinary protein quantity, renal volume, and renal cortical thickness (P < 0.05). CONCLUSIONS: SWE can be used to detect changes in renal stiffness in children with hematuria and/or proteinuria. SWE is beneficial for the early detection of glomerular disease in children with abnormal urine test results. IMPACT: This study evaluated the utility of shear wave elastography for the assessment of renal elasticity in pediatric patients presenting with hematuria and/or proteinuria. Children with pure proteinuria had significantly higher renal cortical/medullary elasticity values than those with pure hematuria. An interaction effect between hematuria and proteinuria on renal cortical stiffness was observed. Shear wave elastography can be used as a tool to assess early renal injury in children with urinalysis abnormalities.

10.
Inorg Chem ; 63(27): 12572-12581, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38924490

RESUMO

The kinetics of electrocatalytic reactions are closely related to the number and intrinsic activity of the active sites. Open active sites offer easy access to the substrate and allow for efficient desorption and diffusion of reaction products without significant hindrance. Metal-organic frameworks (MOFs) with open active sites show great potential in this context. To increase the density of active sites, trimesic acid was utilized as a ligand to anchor more Ni sites and in situ construct the nickel foam-loaded Ni-based trimesic MOF electrocatalyst (Ni-TMA-MOF/NF). When tested as an electrocatalyst for benzyl alcohol oxidation, Ni-TMA-MOF/NF exhibited lower overpotential and superior durability compared to Ni foam-loaded Ni-based terephthalic MOF electrocatalyst (Ni-PTA-MOF/NF) and Ni(OH)2 nanosheet array (Ni(OH)2/NF). Ni-TMA-MOF/NF required only a low potential of 1.65 V to achieve a high current density of 400 mA cm-2. Even after 40000 s of electrocatalytic oxidation at 1.5 V, Ni-TMA-MOF/NF maintained a current density of 175 mA cm-2 with ∼68% retention, showing its potential for benzyl alcohol oxidation. Through a combination of experimental and theoretical investigations, it was found that Ni-TMA-MOF/NF displayed superior electrocatalytic activity due to an optimized electron structure with high-valence Ni species and a high density of active sites, enabling long-term stable operation at high current densities. This study provides a new perspective on the design of electrocatalysts for benzyl alcohol oxidation.

11.
Macromol Rapid Commun ; 45(1): e2300241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37548255

RESUMO

Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.


Assuntos
Polímeros
12.
Environ Res ; 248: 118305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307183

RESUMO

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Assuntos
Microbioma Gastrointestinal , Ileíte , Camundongos , Animais , Disbiose , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Ácidos Graxos/metabolismo
13.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666791

RESUMO

Photoinduced symmetry-breaking charge separation (SB-CS) has been extensively observed in various oligomers and aggregates, which holds great potential for robust artificial solar energy conversion systems. It attaches great importance to the precise manipulation of interchromophore electronic coupling in realizing efficient SB-CS. The emerging studies on SB-CS suggested that it could be realized in null-excitonic aggregates, and a long-lived SB-CS state was observed, which offers an advanced platform and has gathered immense attention in the SB-CS field. Here, we unveiled the null-exciton coupling induced ultrafast SB-CS in a rigid polycyclic aromatic hydrocarbon framework, triperyleno[3,3,3]propellane triimides (TPPTI), in which three chromophores were attached through a nonconjugated bridge. Through a combination of theoretical calculations and steady-state absorption results, we demonstrated that this nonconjugated TPPTI possesses negligible exciton coupling. Increased solvent polarity was found to significantly enhance state mixing between local excited and charge transfer states. Using transient absorption spectroscopy, ultrafast SB-CS was observed in highly polar dimethylformamide, facilitated by a selective hole-transfer coupling and a favorable charge separation free energy (ΔGCS). Additionally, the rate ratio between SB-CS and charge recombination was at least high to 1800 in dimethylformamide. This investigation provides profound insights into the role of null-exciton coupling in dominating ultrafast SB-CS in multichromophoric systems.

14.
Differentiation ; 131: 82-88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37178555

RESUMO

The development of the hyoid bone is a complex process that involves the coordination of multiple signaling pathways. Previous studies have demonstrated that disruption of the hedgehog pathway in mice results in a series of structural malformations. However, the specific role and critical period of the hedgehog pathway in the early development of the hyoid bone have not been thoroughly characterized. In this study, we treated pregnant ICR mice with the hedgehog pathway inhibitor vismodegib by oral gavage in order to establish a model of hyoid bone dysplasia. Our results indicate that administration of vismodegib at embryonic days 11.5 (E11.5) and E12.5 resulted in the development of hyoid bone dysplasia. We were able to define the critical periods for the induction of hyoid bone deformity through the use of a meticulous temporal resolution. Our findings suggest that the hedgehog pathway plays a crucial role in the early development of the hyoid bone. Additionally, our research has established a novel and easily established mouse model of synostosis in the hyoid bone using a commercially available pathway-selective inhibitor.


Assuntos
Doenças do Desenvolvimento Ósseo , Proteínas Hedgehog , Feminino , Gravidez , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Osso Hioide/metabolismo , Camundongos Endogâmicos ICR , Desenvolvimento Embrionário
15.
Ecotoxicol Environ Saf ; 281: 116659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964060

RESUMO

Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.


Assuntos
Cádmio , Poluentes Ambientais , Análise da Randomização Mendeliana , Metais Pesados , Estresse Oxidativo , Insuficiência Renal Crônica , Humanos , Metais Pesados/toxicidade , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Estresse Oxidativo/efeitos dos fármacos , Idoso , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Exposição Ambiental/efeitos adversos , Masculino , Feminino , Cromo/toxicidade , Rim/efeitos dos fármacos
16.
Genomics ; 115(2): 110575, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758877

RESUMO

Genetic interactions play critical roles in genotype-phenotype associations. We developed a novel interaction-integrated linear mixed model (ILMM) that integrates a priori knowledge into linear mixed models. ILMM enables statistical integration of genetic interactions upfront and overcomes the problems of searching for combinations. To demonstrate its utility, with 3D genomic interactions (assessed by Hi-C experiments) as a priori, we applied ILMM to whole-genome sequencing data for Autism Spectrum Disorders (ASD) and brain transcriptome data, revealing the 3D-genetic basis of ASD and 3D-expression quantitative loci (3D-eQTLs) for brain tissues. Notably, we reported a potential mechanism involving distal regulation between FOXP2 and DNMT3A, conferring the risk of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Predisposição Genética para Doença , Genômica , Sequenciamento Completo do Genoma
17.
Anaerobe ; 88: 102863, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718918

RESUMO

This paper reports a case of Bacteroides fragilis induced spondylitis. Diagnosis was confirmed through blood culture and metagenomic sequencing of pus for pathogen detection. Due to persistent lumbar pain, surgical intervention became imperative, resulting in favorable postoperative outcomes. A detailed patient history revealed a severe episode of oral ulceration two weeks before symptom onset, although a direct link to the infection remained elusive. Leveraging insights from this case, we conducted a comprehensive literature review on B. fragilis spondylitis, elucidating clinical manifestations, diagnostic methodologies, and therapeutic strategies.

18.
Drug Dev Ind Pharm ; 50(1): 45-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095592

RESUMO

OBJECTIVE: Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE: Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS: Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS: The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS: Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.


Assuntos
Tecnologia , Tianfenicol/análogos & derivados , Animais , Cães , Disponibilidade Biológica , Solubilidade , Liberação Controlada de Fármacos , Comprimidos
19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474285

RESUMO

The prognosis of patients with malignant melanoma has been improved in recent decades due to advancements in immunotherapy. However, a considerable proportion of patients are refractory to treatment, particularly at advanced stages. This underscores the necessity of developing a new strategy to improve it. Alternative polyadenylation (APA), as a marker of crucial posttranscriptional regulation, has emerged as a major new type of epigenetic marker involved in tumorigenesis. However, the potential roles of APA in shaping the tumor microenvironment (TME) are largely unexplored. Herein, we collected two cohorts comprising melanoma patients who received immune checkpoint inhibitor (ICI) immunotherapy to quantify transcriptome-wide discrepancies in APA. We observed a global change in 3'-UTRs between responders and non-responders, which might involve DNA damage response, angiogenesis, PI3K-AKT signaling pathways, etc. Ten putative master APA regulatory factors for those APA events were detected via a network analysis. Notably, we established an immune response-related APA scoring system (IRAPAss), which exhibited a great performance of predicting immunotherapy response in multiple cohorts. Furthermore, we examined the correlation of APA with TME at the single-cell level using four single-cell immune profiles of tumor-infiltrating lymphocytes (TILs), which revealed an overall discrepancy in 3'-UTR length across diverse T cell populations, probably contributing to immunoregulation in melanoma. In conclusion, our study provides a transcriptional landscape of APA implicated in immunoregulation, which might lay the foundation for developing a new strategy for improving immunotherapy response for melanoma patients by targeting APA.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Poliadenilação , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Regiões 3' não Traduzidas , Microambiente Tumoral
20.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203841

RESUMO

The accurate prediction of binding free energy is a major challenge in structure-based drug design. Quantum mechanics (QM)-based approaches show promising potential in predicting ligand-protein binding affinity by accurately describing the behavior and structure of electrons. However, traditional QM calculations face computational limitations, hindering their practical application in drug design. Nevertheless, the fragment molecular orbital (FMO) method has gained widespread application in drug design due to its ability to reduce computational costs and achieve efficient ab initio QM calculations. Although the FMO method has demonstrated its reliability in calculating the gas phase potential energy, the binding of proteins and ligands also involves other contributing energy terms, such as solvent effects, the 'deformation energy' of a ligand's bioactive conformations, and entropy. Particularly in cases involving ionized fragments, the calculation of solvation free energy becomes particularly crucial. We conducted an evaluation of some previously reported implicit solvent methods on the same data set to assess their potential for improving the performance of the FMO method. Herein, we develop a new QM-based binding free energy calculation method called FMOScore, which enhances the performance of the FMO method. The FMOScore method incorporates linear fitting of various terms, including gas-phase potential energy, deformation energy, and solvation free energy. Compared to other widely used traditional prediction methods such as FEP+, MM/PBSA, MM/GBSA, and Autodock vina, FMOScore showed good performance in prediction accuracies. By constructing a retrospective case study, it was observed that incorporating calculations for solvation free energy and deformation energy can further enhance the precision of FMO predictions for binding affinity. Furthermore, using FMOScore-guided lead optimization against Src homology-2-containing protein tyrosine phosphatase 2 (SHP-2), we discovered a novel and potent allosteric SHP-2 inhibitor (compound 8).


Assuntos
Entropia , Ligantes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA