Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 300(4): 106793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403250

RESUMO

RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue. We found elevated NSUN2 expression levels strongly correlate with tumor grade and size, predicting poor outcomes for NSCLC patients. Furthermore, RNA-seq and subsequent confirmation studies revealed the antioxidant-promoting transcription factor NRF2 is a target of NSUN2, and depleting NSUN2 decreases the expression of NRF2 and increases the sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo. Intriguingly, the methylated-RIP-qPCR assay results indicated that NRF2 mRNA has a higher m5C level when NSUN2 is overexpressed in NSCLC cells but shows no significant changes in the NSUN2 methyltransferase-deficient group. Mechanistically, we confirmed that NSUN2 upregulates the expression of NRF2 by enhancing the stability of NRF2 mRNA through the m5C modification within its 5'UTR region recognized by the specific m5C reader protein YBX1, rather than influencing its translation. In subsequent rescue experiments, we show knocking down NRF2 diminished the proliferation, migration, and ferroptosis tolerance mediated by NSUN2 overexpression. In conclusion, our study unveils a novel regulatory mechanism in which NSUN2 sustains NRF2 expression through an m5C-YBX1-axis, suggesting that targeting NSUN2 and its regulated ferroptosis pathway might offer promising therapeutic strategies for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Masculino , Feminino , Pessoa de Meia-Idade
2.
Anal Chem ; 96(6): 2637-2642, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305901

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a nucleases have emerged as a promising alternative to CRISPR-Cas9 in gene editing and expression regulation. However, the adoption of Cas12a has been hindered due to general off-target activities and limited efficiency. Here, we utilized a hybrid engineered Cas12a variant and hairpin-spacer crRNAs (h-CAP) to enhance the specificity and efficiency of the CRISPR-Cas12a system. Leveraging the h-CAP strategy, we demonstrate both single-base-specific and multiplex gene expression regulation in human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo
3.
Anal Chem ; 96(23): 9460-9467, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38820243

RESUMO

Pathological cardiac hypertrophy is a complex process that often leads to heart failure. Label-free proteomics has emerged as an important platform to reveal protein variations and to elucidate the mechanisms of cardiac hypertrophy. Endomyocardial biopsy is a minimally invasive technique for sampling cardiac tissue, but it yields only limited amounts of an ethically permissible specimen. After regular pathological examination, the remaining trace samples pose significant challenges for effective protein extraction and mass spectrometry analysis. Herein, we developed trace cardiac tissue proteomics based on the anchor-nanoparticles (TCPA) method. We identified an average of 6666 protein groups using ∼50 µg of myocardial interventricular septum samples by TCPA. We then applied TCPA to acquire proteomics from patients' cardiac samples both diagnosed as hypertrophic hearts and myocarditis controls and identified significant alterations in pathways such as regulation of actin cytoskeleton, oxidative phosphorylation, and cGMP-PKG signaling pathway. Moreover, we found multiple lipid metabolic pathways to be dysregulated in transthyretin cardiac amyloidosis compared to other types of cardiac hypertrophy. TCPA offers a new technique for studying pathological cardiac hypertrophy and can serve as a platform toolbox for proteomic research in other cardiac diseases.


Assuntos
Miocárdio , Nanopartículas , Proteômica , Proteômica/métodos , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/química , Nanopartículas/química , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/diagnóstico , Amiloidose/metabolismo , Amiloidose/patologia , Neuropatias Amiloides Familiares
4.
Mycology ; 15(1): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558835

RESUMO

The burden of fungal infections on human health is increasing worldwide. Aspergillus, Candida, and Cryptococcus are the top three human pathogenic fungi that are responsible for over 90% of infection-related deaths. Moreover, effective antifungal therapeutics are lacking, primarily due to host toxicity, pathogen resistance, and immunodeficiency. In recent years, nanomaterials have proved not only to be more efficient antifungal therapeutic agents but also to overcome resistance against fungal medication. This review will examine the limitations of standard antifungal therapy as well as focus on the development of nanomaterials.

5.
ChemSusChem ; : e202400309, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610067

RESUMO

Layered double hydroxide (LDH) nanosheets as one type of two-dimensional materials have garnered increasing attention in the field of oxygen evolution reaction (OER) in recent decades. To address the challenges associated with poor conductivity and limited electron and charge transfer capability in LDH materials, we have developed a straightforward one-pot synthesis method to successfully fabricate a composite material with a microstructure resembling cabbage, which encompasses NiFe-LDH and nanocarbon (referred as NiFe-LDH@C). Atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) revealed that the monolayer NiFe-LDH with a height of ~0.5-0.8 nm is uniformly distributed and closely bonded to the carbon support, leading to a significant enhancement in conductivity and facilitating faster electron and charge transfer. Moreover, the NiFe-LDH@C exhibits a substantial number of surface defect sites, which enhances the interaction with oxygen species. This dual enhancement in charge transfer and oxygen species-mediated transfer greatly improves the catalytic OER performance, which is further corroborated by theoretical calculations. Notably, the Ni10Fe6-LDH@C with the highest concentration of surface oxygen vacancies demonstrated superior water oxidation performance, surpassing commercially available RuO2 catalysts; an OER overpotential of 231 mV@10 mA cm-2 with a Tafel slope of 71 mV dec-1 was achieved.

6.
Int Immunopharmacol ; 139: 112716, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39038386

RESUMO

BACKGROUND: Prolonged exposure to interleukin-17A (IL-17A) can induce autoimmune myocarditis, and MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to effectively suppress various inflammatory reactions. However, the effects of MLN4924 in IL-17A-mediated inflammation associated with autoimmune myocarditis remain uncertain. METHODS: An experimental autoimmune myocarditis (EAM) model was established and treated with MLN4924. The inflammation degree of heart tissues was assessed histopathologically. The expression levels of inflammatory cytokines and chemokines were measured using ELISA and RT-qPCR, respectively. Additionally, the interaction of biomacromolecules was detected through co-immunoprecipitation (Co-IP) and RNA immunoprecipitation (RIP). RESULTS: MLN4924 could attenuate IL-17A-induced inflammation. In the in vivo studies, MLN4924 treatment improved inflammatory responses, diminished immune cell infiltration and tissue fibrosis, and reduced the secretion of various inflammatory cytokines in serum, including IL-1ß, IL-6, TNF-α, and MCP-1. In vitro experiments further corroborated these findings, showing that MLN4924 treatment reduced the secretion and transcription of pro-inflammatory factors, particularly MCP-1. Mechanistically, we confirmed that MLN4924 promoted Act1 ubiquitination degradation and disrupted Act1's interaction with IL-17R, thereby impeding the formation of the IL-17R/Act1/TRAF6 complex and subsequent activation of TAK1, c-Jun, and p65. Moreover, MLN4924 interfered with Act1's binding to mRNA, resulting in mRNA instability. CONCLUSIONS: In conclusion, MLN4924 effectively alleviated inflammatory symptoms in EAM by disrupting the interaction between IL and 17R and Act1, thereby reducing Act1-mediated mRNA stability and resulting in decreased expression of pro-inflammatory factors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Autoimunes , Ciclopentanos , Citocinas , Miocardite , Pirimidinas , Estabilidade de RNA , Animais , Miocardite/tratamento farmacológico , Miocardite/imunologia , Miocardite/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Camundongos , Estabilidade de RNA/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Interleucina-17/metabolismo , Modelos Animais de Doenças , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo , Camundongos Endogâmicos BALB C
7.
Nat Commun ; 15(1): 5752, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982135

RESUMO

The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.


Assuntos
Proteoma , Proteômica , Animais , Proteoma/metabolismo , Camundongos , Feminino , Masculino , Proteômica/métodos , Rim/metabolismo , Rim/crescimento & desenvolvimento , Spliceossomos/metabolismo , Especificidade de Órgãos , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Caracteres Sexuais , Baço/metabolismo , Baço/crescimento & desenvolvimento
8.
Adv Mater ; 36(33): e2401559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958107

RESUMO

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.


Assuntos
Ácidos Borônicos , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Proteômica , Humanos , Estruturas Metalorgânicas/química , Proteômica/métodos , Animais , Ácidos Borônicos/química , Camundongos , Elementos da Série dos Lantanídeos/química , Células HEK293 , Proteoma/análise , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA