RESUMO
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries.
RESUMO
Organic electrode materials have emerged as promising alternatives to conventional inorganic materials because of their structural diversity and environmental friendliness feature. However, their low energy densities, limited by the single-electron reaction per active group, have plagued the practical applications. Here, we report a nitroaromatic cathode that performs a six-electron reaction per nitro group, drastically improving the specific capacity and energy density compared with the organic electrodes based on single-electron reactions. Based on such a reaction mechanism, the organic cathode of 1,5-dinitronaphthalene demonstrates an ultrahigh specific capacity of 1,338 mAhâ g-1 and energy density of 3,273 Whâ kg-1, which surpass all existing organic cathodes. The reaction path was verified as a conversion from nitro to amino groups. Our findings open up a pathway, in terms of battery chemistry, for ultrahigh-energy-density Li-organic batteries.
RESUMO
Per- and polyfluoroalkyl substances (PFASs) are a family of "forever chemicals" including perfluorooctane sulfonate (PFOS). These toxic chemicals do not break down in the environment or in our bodies. In the human body, PFOS and perfluoroctanoic acid (PFOA) have a half-life (T1/2) of about 4-5 yr so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the United States in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS -induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.NEW & NOTEWORTHY PFOS induces Sertoli cell injury, including disruption of the 1) blood-testis barrier function and 2) cytoskeletal organization, which, in turn, impedes male reproductive function. These changes are mediated by JNK/p-JNK signaling pathway. However, the use of KB-R7943, a JNK/p-JNK activator was capable of blocking PFOS-induced Sertoli cell injury, supporting the possibility of therapeutically managing PFOS-induced reproductive dysfunction.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Proteínas Quinases JNK Ativadas por Mitógeno , Células de Sertoli , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Masculino , Animais , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , RNA-Seq , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Células Cultivadas , Camundongos , Ratos , Ratos Sprague-DawleyRESUMO
Three-micrometer mid-infrared (MIR) femtosecond pulse sources with a high repetition rate (HRR) have potential applications in a number of fields such as biological imaging, optical frequency combs, and gas detection. In this paper, by optimizing the fiber length and the cavity structure, we demonstrated a highly stable, self-starting mode-locked fluoride fiber laser (MLFFL) with a fundamental repetition rate of â¼165â MHz and a signal-to-noise ratio (SNR) of 90â dB. As far as we know, this stands as the highest fundamental repetition rate ever acquired directly from an ultrafast MLFFL in the >2.5â µm MIR region. Stable 352-fs pulses at 2795â nm with an average output power of 392â mW and a low integrated relative intensity noise (RIN) of 0.018% [10â Hz, 10â MHz] were generated. The root mean square (RMS) power fluctuation is 0.17% over 2â h, which indicates excellent oscillator stability. This high-performance laser offers a practicable scheme both for scaling the repetition frequency in MIR MLFFLs and high-precision ultrafast applications at longer wavelengths.
RESUMO
Obstructive azoospermia (OA) accounts for approximately 40% of males who suffer from azoospermia of male infertility. Currently, available treatment for OA consists of reproductive tract surgical reconstruction and sperm retrieval from the testis. However, both treatments result in low fertility compared to normal pregnancy, and the main reason remains largely unknown. Previous studies have shown that the quality of sperm retrieved from OA patients is poor compared with normal adult males but without an in-depth study. Herein, we generated a mouse OA model with vasectomy to evaluate sperm quality systematically. Our results showed that the testis had normal spermatogenesis but increased apoptotic activity in both OA patients and mice. More importantly, epididymal morphology was abnormal, with swollen epididymal tubules and vacuole-like principal cells. Especially, sperm retrieved from the epididymis of OA mice showed poor motility and low fertilization ability in vitro. Using mass spectrometry in epididymal fluid, we found differences in the expression of key proteins for sperm maturation, such as Angiotensinogen (AGT), rhophilin-associated tail protein 1 (ROPN1), NPC intracellular cholesterol transporter 2 (NPC2), and prominin 1 (PROM1). Furthermore, our results demonstrated that AGT, secreted by epididymal principal cells, could regulate sperm motility by managing PKCα expression to modify sperm phosphorylation. In conclusion, our data evaluate sperm quality systematically in OA mice and contribute to the understanding between the sperm and epididymis, which may provide novel insight into treating male infertility.
Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Gravidez , Feminino , Masculino , Animais , Camundongos , Epididimo , Azoospermia/terapia , Motilidade dos Espermatozoides , Sêmen , Testículo , EspermatozoidesRESUMO
A narrow linewidth electro-optically tuned multi-channel interference (MCI) widely tunable semiconductor laser based on carrier injection is demonstrated in this paper. The MCI laser with a common phase section and a semiconductor optical amplifier (SOA) is packaged into a 16-pin butterfly box. The laser is characterized by a strategy: shifting the longitudinal mode and then aligning the reflection peak, which obtains a quasi-continuous tuning range over 48â nm. The corresponding side mode suppression ratios (SMSRs) are higher than 40â dB and frequency deviations from ITU-grid are less than ± 1â GHz. Threshold currents are less than 28â mA. Fiber coupled output powers are higher than 20â mW and power variations with fixed gain and SOA currents are less than 0.8â dB over the whole tuning range. Lorentzian linewidths are less than 320 kHz over the entire tuning range, which is one of the lowest results for monolithic widely tunable semiconductor lasers tuned by carrier injection. These results demonstrate the potential prospects of the MCI laser with carrier injection in the field of optical sensing and optical communications.
RESUMO
Lithium primary batteries are still widely used in military, aerospace, medical, and civilian applications despite the omnipresence of rechargeable Li-ion batteries. However, these current primary chemistries are exclusively based on inorganic materials with high cost, low energy density or severe safety concerns. Here, a novel lithium-organic primary battery chemistry that operates through a synergetic reduction of 9,10-anthraquinone (AQ) and fluoroethylene carbonate (FEC) is reported. In FEC-presence, the equilibrium between the carbonyl and enol structures is disabled, and replaced by an irreversible process that corresponds to a large capacity along with methylene and inorganic salts (such as LiF, Li2 CO3 ) generated as products. This irreversible chemistry of AQ yields a high energy density of 1300 Wh/(kg of AQ) at a stable discharge voltage platform of 2.4 V as well as high rate capability (up to 313 mAh g-1 at a current density of 1000 mA g-1 ), wide temperature range of operation (-40 to 40 °C) and low self-discharge rate. Combined with the advantages of low toxicity, facile and diverse synthesis methods, and easy accessibility of AQ, Li-organic primary battery chemistry promises a new battery candidate for applications that requires low cost, high environmental friendliness, and high energy density.
RESUMO
The nonanesthetic noble gas helium (He) can protect many organs against ischemia and reperfusion injury, such as liver and heart. However, the role of He on cardiac dysfunction during sepsis is not clear. In this study, we established a lipopolysaccharide (LPS)-induced cardiac dysfunction mouse model to examine the influence of He on the impaired cardiac function, and further investigated the possible innate immune mechanisms that may be involved. LPS induced left ventricular dysfunction and cavity enlargement, as indicated by decreased percent ejection fraction, percent fractional shortening, left ventricular anterior wall thickness in systole, and left ventricular posterior wall thickness in systole, while increased left ventricular end-systolic diameter and left ventricular end-systolic volume. He improved the impaired left ventricular function and cavity enlargement in a dose-dependent manner, and it was beneficial at 1.0 mL/100 g. Mechanistically, He inhibited toll-like receptor 4 (TLR4) expression, reduced the phosphorylation of nuclear factor κB (NF-κB), and subsequently alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-18 (IL-18) expression in heart. Therefore, He protects against LPS-induced cardiac dysfunction in mice partially via inhibiting myocardial TLR4-NF-κB-TNF-α/IL-18 signaling.
Assuntos
Transdução de Sinais , Animais , Cardiopatias , Hélio , Interleucina-18 , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfaRESUMO
Organic cathode materials have attracted extensive attention because of their diverse structures, facile synthesis, and environmental friendliness. However, they often suffer from insufficient cycling stability caused by the dissolution problem, poor rate performance, and low voltages. An inâ situ electropolymerization method was developed to stabilize and enhance organic cathodes for lithium batteries. 4,4',4''-Tris(carbazol-9-yl)-triphenylamine (TCTA) was employed because carbazole groups can be polymerized under an electric field and they may serve as high-voltage redox-active centers. The electropolymerized TCTA electrodes demonstrated excellent electrochemical performance with a high discharge voltage of 3.95â V, ultrafast rate capability of 20â A g-1 , and a long cycle life of 5000â cycles. Our findings provide a new strategy to address the dissolution issue and they explore the molecular design of organic electrode materials for use in rechargeable batteries.
RESUMO
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Animais , Masculino , Camundongos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Barreira Hematotesticular , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/metabolismo , Células de Sertoli/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
The discharge of industrial wastewater containing high concentrations of N-nitrosamines to the aquatic environment can impair downstream source waters and pose potential risks to human health. However, the transport and fate of N-nitrosamines in typical industrial wastewater treatment plants (IWWTPs) and the influence of these effluents on source water and drinking water are still unclear. This study investigated nine N-nitrosamines in four full-scale electroplating (E-) and printing/dyeing (PD-) IWWTPs, two drinking water treatment plants (DWTPs) in the lower reaches of these IWWTPs, and the corresponding tap water in South China. The total concentrations of N-nitrosamines (∑NAs) were 382-10,600, 480-1920, 494-789, and 27.9-427 ng/L in influents, effluents, source water, and tap water, respectively. The compositions of N-nitrosamine species in different influents varied a lot, while N-nitrosodi-n-butylamine (NDBA) and N-nitrosodimethylamine (NDMA) dominated in most of the effluents, source water, and tap water. More than 70 % N-nitrosamines were removed by wastewater treatment processes used in E-IWWTPs such as ferric-carbon micro-electrolysis (Fe/C-ME), while only about 50 % of N-nitrosamines were removed in PD-IWWTPs due to the use of chlorine reagent or other inefficient conventional processes such as flocculation by cationic amine-based polymers or bio-contact oxidation. Therefore, the mass fluxes of N-nitrosamines discharged from these industrial wastewaters to the environment in the selected two industrial towns were up to 14,700 mg/day. The results based on correlation and principal component analysis significantly demonstrated correlations between E-and PD-effluents and source water and tap water, suggesting that these effluents can serve as sources of N-nitrosamines to local drinking water systems. This study suggests that N-nitrosamines are prevalent in typical IWWTPs, which may infect drinking water systems. The findings of this study provide a basis data for the scientific evaluation of environmental processes of N-nitrosamines.
RESUMO
Under China's "dynamic zero" COVID-19 policy, Shenzhen required its residents to present a negative nucleic acid testing result within 24 or 48 h to access most public spaces and transit until most recently. The uneven accessibility to testing services could render certain groups vulnerable to mobility disadvantage (e.g., denied access to public transport). Using data of nucleic acid testing services and residents' positioning points, I created a cartogram to capture the spatial distribution of people's activities and that of testing services in Shenzhen. The cartogram indicates that the nucleic acid testing services were spatially concentrated in a way inconsistent with the distribution of people's daily activities. Several girds exhibit high presence of activities but low or no provision of testing services that were necessary for residents to accessing public spaces and transport. The cartogram casts light to potential consequence of regular nucleic acid testing on mobility equality.
RESUMO
The COVID-19 pandemic challenged emergency management in cities worldwide. Many municipalities adopted restrictive, one-size-fits-all spatial regulations such as lockdowns without fully considering the inhabitants' daily activities and local economies. The existing epidemic regulations' unintended detrimental effects on socioeconomic sustainability necessitate a transition from the "lockdown" approach to more precise disease prevention. A spatially and temporally precise approach that balances epidemic prevention with the demands of daily activities and local economies is needed. Thus, the aim of this study was to propose a framework and key procedures for determining precise prevention regulations from the perspectives of the 15-minute city concept and spatiotemporal planning. Alternative regulations of lockdowns were determined by delineating 15-minute neighborhoods, identifying and reconfiguring facility supplies and activity demands in both normal and epidemic conditions, and performing cost-benefit analyses. Highly adaptable, spatially- and temporally-precise regulations can match the needs of different types of facilities. We demonstrated the process for determining precise prevention regulations in the case of the Jiulong 15-minute neighborhood in Beijing. Precise prevention regulations-which meet essential activity demands and are adaptable for different facility types, times, and neighborhoods-have implications for long-term urban planning and emergency management.
RESUMO
Organic electrode materials are composed of abundant elements, have diverse and designable molecular structures, and are relatively easily synthesized, promising a bright future for low-cost and large-scale energy storage. However, they are facing low specific capacity and low energy density. Herein, we report a high-energy-density organic electrode material, 1,5-dinitroanthraquinone, which is composed of two kinds of electrochemically active sites of nitro and carbonyl groups. They experience six- and four-electron reduction and are transformed into amine and methylene groups, respectively, in the presence of fluoroethylene carbonate (FEC) in the electrolyte. Drastically increased specific capacity and energy density are demonstrated with an ultrahigh specific capacity of 1321 mAh g-1 and a high voltage of â¼2.62 V, corresponding to a high energy density of 3400 Wh kg-1. This surpasses the electrode materials in commercial lithium batteries. Our findings provide an effective strategy to design high-energy-density and novel lithium primary battery systems.
RESUMO
Spermatogenesis is a highly specialized cell differentiation process regulated by the testicular microenvironment. During the process of spermatogenesis, phagocytosis performs an essential role in male germ cell development, and its dysfunction in the testis can cause reproduction defects. MerTK, as a critical protein of phagocytosis, facilitates the removal of apoptotic substrates from the retina and ovaries through cooperation with several phagocytosis receptors. However, its role in mammalian spermatogenesis remains undefined. Here, we found that 30-week-old MerTK-/- male mice developed oligoasthenospermia due to abnormal spermatogenesis. These mice showed damaged seminiferous tubule structure, as well as altered spermatogonia proliferation and differentiation. We also found that Sertoli cells from MerTK-/- mice had decreased phagocytic activity on apoptotic germ cells in vitro. Moreover, a transcriptomic analysis demonstrated that the pivotal genes involved in spermatid differentiation and development changed expression. These results indicate that MerTK is crucial for spermatogenesis, as it regulates the crosstalk between germ cells and Sertoli cells. This provides us insight into the molecular mechanism of MerTK on spermatogenesis and its implications for the diagnosis and treatment of human male infertility.
Assuntos
Infertilidade Masculina , Espermatogênese , c-Mer Tirosina Quinase , Animais , Masculino , Camundongos , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mamíferos , Túbulos Seminíferos , Células de Sertoli/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismoRESUMO
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Assuntos
Ecossistema , Microbiota , Mineração , Consórcios Microbianos , Água Doce , FerroRESUMO
Lithium-metal batteries (LMBs) using lithium-metal anodes and high-voltage cathodes have been deemed as one of the most promising high-energy-density battery technology. However, its practical application is largely hindered by the notorious dendrite growth of lithium-metal anodes, the fast structure degradation of the cathode, and insufficient electrode-electrolyte interphase kinetics. Here, a dual-anion regulated electrolyte is developed for LMBs using lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and lithium difluoro(bisoxalato)phosphate (LiDFBOP) as anion regulators. The incorporation of TFSI- in the solvation sheath reduces the desolvation energy of Li+ , and DFBOP- promotes the formation of highly ion-conductive and sustainable inorganic-rich interphases on the electrodes. Significantly enhanced performance is demonstrated on Li||LiNi0.83 Co0.11 Mn0.06 O2 pouch cells, with 84.6% capacity retention after 150 cycles in 6.0 Ah pouch cells and an ultrahigh rate capability up to 5 C in 2.0 Ah pouch cells. Furthermore, a pouch cell with an ultralarge capacity of 39.0 Ah is fabricated and achieves an ultrahigh energy density of 521.3 Wh kg-1 . The findings provide a facile electrolyte design strategy for promoting the practical utilization of high-energy-density LMBs.
RESUMO
Microbial communities constitute a diverse genetic resource pool in the soil and are key indicators of soil health and quality. How re-vegetation affects soil microbial diversity and community composition at the dump of an opencast coal mine is largely unknown. Using high-throughput sequencing, we performed a comparative study of the bacterial and fungal communities from non-vegetated (bare land) soil and from areas re-vegetated by Astragalus laxmannii, Halogeton arachnoideus, and Artemisia desertorum at an opencast coal mine in the Helan Mountains in western China. These results indicated that re-vegetation significantly reduced soil conductivity. The soils re-vegetated by all three plant species showed greater richness of bacterial species than the bare land, and soils re-vegetated with A. desertorum and A. laxmannii showed significantly greater richness of fungal species than bare land. The bacterial and fungal ß-diversity values differed significantly between vegetated and non-vegetated soil, and these differences were more pronounced for bacterial communities than for fungal communities. Re-vegetation significantly increased the relative abundances of Proteobacteria and Bacteroidota and decreased the relative abundance of Chloroflexi. The decreasing soil conductivity that occurred with re-vegetation was found to be an important environmental determinant of the soil microbial community. This study provides evidence that re-vegetation may enhance soil quality via decreasing soil conductivity and altering the soil microbial community, and A. laxmannii was found to be a more effective species than H. arachnoideus or A. desertorum with respect to decreasing soil conductivity and altering the soil microbial communities in the Opencast Coal Mine arid region. This work may provide a helpful guideline for selection of plant species for re-vegetation projects.
RESUMO
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by inflammation and demyelination. Presently, repeated relapses of MS necessitate long-term immune-regulatory therapy. Blocking the CD28-B7 and CD40-CD40L costimulatory pathways is an effective and synergistic method for the prevention and amelioration of clinical symptoms of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this study, to explore the efficacy and safety of MS gene therapy, we used adeno-associated virus (AAV) as a vector to deliver CTLA4-immunoglobulin (Ig) or CD40-Ig on the EAE induced by myelin oligodendrocyte glycoprotein (MOG). Our results showed that a single administration of AAV8-CTLA4-Ig, either alone or with AAV8-CD40-Ig, protected mice from EAE and reversed disease progression. Decreased CD4+ and CD8+ T cell infiltration, inhibition of MOG antibody response, and downregulation of neuroinflammation were observed in mice receiving AAV, suggesting that autoimmunity was suppressed in EAE pathology. Moreover, no hematological or hepatic toxicity was observed in AAV-treated mice. Thus, compared with treatment with recombinant CTLA4-Ig (belatacept), AAV gene therapy could effectively control clinical symptoms and suppress autoimmunity in the long term. In summary, our study provides a potential therapeutic method for blocking T cell costimulation for the treatment of MS via gene therapy.
RESUMO
Organic electrode materials free of rare transition metal elements are promising for sustainable, cost-effective, and environmentally benign battery chemistries. However, severe shuttling effect caused by the dissolution of active materials in liquid electrolytes results in fast capacity decay, limiting their practical applications. Here, using a gel polymer electrolyte (GPE) that is in situ formed on Nafion-coated separators, the shuttle reaction of organic electrodes is eliminated while maintaining the electrochemical performance. The synergy of physical confinement by GPE with tunable polymer structure and charge repulsion of the Nafion-coated separator substantially prevents the soluble organic electrode materials with different molecular sizes from shuttling. A soluble small-molecule organic electrode material of 1,3,5-tri(9,10-anthraquinonyl)benzene demonstrates exceptional electrochemical performance with an ultra-long cycle life of 10â¯000 cycles, excellent rate capability of 203 mAh g-1 at 100 C, and a wide working temperature range from -70 to 100 °C based on the solid-liquid conversion chemistry, which outperforms all previously reported organic cathode materials. The shielding capability of GPE can be designed and tailored toward organic electrodes with different molecular sizes, thus providing a universal resolution to the shuttling effect that all soluble electrode materials suffer.