Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(1): e14984, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997526

RESUMO

Many clinical studies have demonstrated a correlation between psoriasis vulgaris and dementia, yet this correlation remains controversial. Our study employed the Mendelian randomization (MR) method to investigate the causal relationship between psoriasis vulgaris and dementia. Data were obtained from the summary statistics of the genome-wide association studies from IEU-OpenGWAS project database. In univariate Mendelian randomization (UVMR) analysis, psoriasis vulgaris was used as exposure. Alzheimer disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD) and frontotemporal dementia (FTD) served as the outcomes. In multivariate Mendelian randomization (MVMR) analysis, VaD served as the outcome. The first MVMR analysis used psoriasis vulgaris, mean platelet volume (MPV), platelet distribution width (PDW) and platelet count (PLT) as exposures. The second MVMR analysis used psoriasis vulgaris, vitamin D level and 25 hydroxyvitamin D level as exposures. The main analysis employed the inverse variance weighted method, and the outcomes were evaluated by odds ratio (OR) and 95% confidence interval (95% CI). In UVMR analysis, the results depicted that psoriasis vulgaris was associated with VaD (OR: 0.903, 95% CI: 0.818-0.996, p = 0.041). The results revealed insignificant associations between psoriasis vulgaris and other dementia types. After adjusting the effects of MPV, PDW and PLT in MVMR analysis, the association between psoriasis vulgaris and VaD was no longer significant (p = 0.164). Similarly, after adjusting the effects of vitamin D level and 25 hydroxyvitamin D level in MVMR analysis, the association between psoriasis vulgaris and VaD was also no longer significant (p = 0.533). Our study suggests that psoriasis vulgaris may potentially decrease VaD incidence. However, the causal association between psoriasis vulgaris and VaD may be impeded by platelet-related indices, vitamin D level and 25 hydroxyvitamin D level.


Assuntos
Demência , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Psoríase/complicações , Psoríase/genética , Calcifediol , Vitamina D , Demência/etiologia , Demência/genética
2.
Int Arch Allergy Immunol ; : 1-10, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749400

RESUMO

INTRODUCTION: T cells play a critical role in inflammatory diseases. The aim of the present study was to investigate the effects of Majie cataplasm (MJC) on asthma and to propose a possible mechanism involved in this process. METHODS: Airway inflammation, infiltration of inflammatory cells, levels of interleukin (IL)-4, IL-10, IL-17, and interferon (IFN)-γ, levels of Th2, Treg, Th17, and Th1 cells, and the expressions of IL-4, IL-10, IL-17, IFN-γ, GATA binding protein 3 (GATA-3), Foxp3, RAR-related orphan receptor gamma (RORγt), and T-bet were detected. RESULT: MJC treatment reduced lung airway resistance and inflammatory infiltration in lung tissues. MJC treatment also reduced the numbers of eosinophils and neutrophils in the blood and bronchoalveolar lavage fluid (BALF). The levels of IL-4 and IL-17 in the blood, BALF, and lungs were suppressed by MJC, and IFN-γ and IL-10 were increased. Furthermore, MJC suppressed the percentage of Th2 and Th17 and increased the percentage of Th1 and Treg in spleen cells. In addition, MJC can inhibit asthma by increasing expressions of IFN-γ, IL-10, T-bet, and Foxp3, as well as decreasing expressions of IL-4, IL-17, GATA-3, and RORγt. CONCLUSION: MJC may improve airway hyperresponsiveness and inflammation by regulating Th1/Th2/Treg/Th17 balance in ovalbumin-induced rats. And MJC may be a new source of anti-asthma drugs.

3.
Curr Atheroscler Rep ; 26(8): 435-449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814418

RESUMO

PURPOSE OF REVIEW: Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease.Hypercholesterolemia may increase the risk of dementia, but the association between cholesterol and cognitive function is very complex. From the perspective of peripheral and brain cholesterol, we review the relationship between hypercholesterolemia and increased risk of VaD and how the use of lipid-lowering therapies affects cognition. RECENT FINDINGS: Epidemiologic studies show since 1980, non-HDL-C levels of individuals has increased rapidly in Asian countries.The study has suggested that vascular risk factors increase the risk of VaD, such as disordered lipid metabolism. Dyslipidemia has been found to interact with chronic cerebral hypoperfusion to promote inflammation resulting in cognitive dysfunction in the brain.Hypercholesterolemia may be a risk factor for VaD. Inflammation could potentially serve as a link between hypercholesterolemia and VaD. Additionally, the potential impact of lipid-lowering therapy on cognitive function is also worth considering. Finding strategies to prevent and treat VaD is critical given the aging of the population to lessen the load on society. Currently, controlling underlying vascular risk factors is considered one of the most effective methods of preventing VaD. Understanding the relationship between abnormal cholesterol levels and VaD, as well as discovering potential serum biomarkers, is important for the early prevention and treatment of VaD.


Assuntos
Colesterol , Demência Vascular , Hipercolesterolemia , Humanos , Demência Vascular/etiologia , Demência Vascular/epidemiologia , Demência Vascular/metabolismo , Hipercolesterolemia/complicações , Hipercolesterolemia/epidemiologia , Fatores de Risco , Colesterol/metabolismo , Colesterol/sangue
4.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361829

RESUMO

A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.


Assuntos
Encefalopatias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Encefalopatias/metabolismo
5.
BMC Complement Altern Med ; 19(1): 320, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747940

RESUMO

BACKGROUND: Cerebral ischemia is the second-leading cause of death and the main cause of permanent adult disabilities worldwide. Qingkailing (QKL) injection, a patented Chinese medicine approved by the China Food and Drug Administration, has been widely used in clinical practice to treat cerebral ischemia in China. The NOD-like receptor pyrin 3 (NLRP3) inflammasome is activated in cerebral ischemia and thus, is an effective therapeutic target. AMP-activated protein kinase (AMPK) is an important regulator inhibiting NLRP3 inflammasome activation. METHODS: We investigated the potential of QKL injection to provide neuroprotection after cerebral ischemia in a rat model of middle cerebral artery occlusion (MCAO). Adult male Sprague-Dawley rats (210-230 g) were randomly divided into three groups which consist of sham, MCAO and 3 ml/kg QKL. Rats in the QKL group received intraperitoneal injections of 3 ml/kg QKL, while rats in other groups were given saline in the same volumes. After 90 min ischemia and 24 h reperfusion, neurological function, laser speckle imaging, brain infarction, brain water content and brain blood barrier permeability were examined and cell apoptosis at prefrontal cortex were evaluated 24 h after MCAO, and western blot and real-time quantitative polymerase chain reaction was also researched, respectively. RESULTS: Intraperitoneal administration of QKL alleviated neurological deficiencies, cerebral infarction, blood-brain barrier permeability, brain oedema and brain cell apoptosis after MCAO induction. QKL decreased pro-inflammatory cytokines, TNF-α, IL-6 and IL-1ß, and increased anti-inflammatory cytokines, IL-4 and IL-10. Furthermore, QKL activated phosphorylated AMPK, decreased oxidative stress and decreased NLRP3 inflammasome activation. CONCLUSIONS: QKL relieved cerebral ischemia reperfusion injury and suppressed the inflammatory response by inhibiting AMPK-mediated activation of the NLRP3 inflammasome. These results suggest that QKL might have potential in treating brain inflammatory response and attenuating the cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
BMC Complement Altern Med ; 17(1): 203, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388904

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) represents one of the most common forms of liver disease worldwide, and it is always regarded as a consequence of a sedentary, food-abundant lifestyle, sitting for an extended time, and a low physical activity level, which often coincide with chronic and long-lasting psychological stress. A Chinese medicine Sinisan (SNS) may be a potential formula for treating this kind of disease. METHODS: In this study, a long-term chronic restraint stress protocol was used to investigate the mechanism underlying stress-induced NALFD. To investigate the effect of SNS treatment on stress-induced NAFLD, we measured the liver and serum values of total cholesterol (TC), triglyceride (TG), liver free fatty acids (FFA), low-density lipoprotein, superoxide dismutase, tumor necrosis factor-α, malondialdehyde, interleukin (IL)-6, and serum values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase. Results are shown as a mean ± standard deviation. Significant differences between the groups were evaluated using the Student t-test. For multiple comparisons, one-way analysis of variance (ANOVA) was used. If the results of ANOVA indicated significant differences, post hoc analysis was performed with the Tukey test or Dunnett test, and p < 0.05 was considered statistically significant. RESULTS: Long-term chronic stress led to steatosis and non-alcoholic steatohepatitis. Additionally, SNS treatment significantly increased body weight gain (p < 0.01) and sucrose preference (p < 0.001), and it reduced the liver values of TC, TG, and FFA (p < 0.05). SNS also reduced the serum values of AST and ALT (p < 0.001), and the liver value of IL-6 (p < 0.01). CONCLUSIONS: This study's results demonstrate that psychological stress may be a significant risk factor of NAFLD. Furthermore, the traditional Chinese medicine formula SNS may have some beneficial effect in antagonizing psychological stress and stress-related NAFLD.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Alanina Transaminase/metabolismo , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Medicamentos de Ervas Chinesas/química , Humanos , Interleucina-6/metabolismo , Masculino , Malondialdeído/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/psicologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo
7.
Int J Mol Sci ; 17(5)2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27164096

RESUMO

During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.


Assuntos
Depressão/metabolismo , Eritropoetina/metabolismo , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Eritropoetina/genética , Hipocampo/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
8.
Curr Pharm Des ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38910274

RESUMO

BACKGROUND: Neuroinflammation is the pathological basis of many neurological diseases, including neurodegenerative diseases and stroke. Hua-Feng-Dan (HFD) is a well-established traditional Chinese medicine that has been used for centuries to treat stroke and various other brain-related ailments. OBJECTIVE: Our study aims to elucidate the molecular mechanism by which HFD mitigates neuroinflammation by combining network pharmacology and in vitro experiments. METHODS: TCMSP and SymMap databases were used to extract active compounds and their related targets. The neuroinflammation-related targets were obtained from the GeneCards database. The common targets of HFD and neuroinflammation were used to construct a protein-protein interaction (PPI) network. MCODE plug-in was used to find the hub module genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to dissect the hub module genes. The lipopolysaccharide (LPS)-induced BV2 microglial neuroinflammation model was utilized to assess the therapeutic effects of HFD on neuroin- flammation. Western blotting analysis was performed to examine the core target proteins in the TLR4/My- D88/NF-κB signaling pathway, potentially implicated in HFD's therapeutic effects on neuroinflammation. Hoechst 33342 staining and JC-1 staining were employed to evaluate neuronal apoptosis. RESULTS: Through network pharmacology, 73 active compounds were identified, with quercetin, beta-sitos- terol, luteolin, and (-)-Epigallocatechin-3-Gallate recognized as important compounds. Meanwhile, 115 com- mon targets of HFD and neuroinflammation were identified, and 61 targets were selected as the hub targets uti- lizing the MCODE algorithm. The results of in vitro experiments demonstrated that HFD significantly inhibit- ed microglial-mediated neuronal inflammation induced by LPS. Integrating the predictions from network phar- macology with the in vitro experiment results, it was determined that the mechanism of HFD in mitigating neu- roinflammation is closely related to the TLR4/MyD88/NF-κB pathway. Furthermore, HFD demonstrated the capacity to shield neurons from apoptosis by curbing the secretion of pro-inflammatory factors subsequent to microglial activation. CONCLUSION: The findings demonstrated that HFD had an inhibitory effect on LPS-induced neuroinflammation in microglia and elucidated its underlying mechanism. These findings will offer a theoretical foundation for the clinical utilization of HFD in treating neurodegenerative diseases associated with neuroinflammation.

.

9.
Front Endocrinol (Lausanne) ; 14: 1159258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334291

RESUMO

Background and aims: Non-alcoholic fatty liver disease(NAFLD) is common worldwide and has previously been reported to be associated with sleep traits. However, it is not clear whether NAFLD changes sleep traits or whether the changes in sleep traits lead to the onset of NAFLD. The purpose of this study was to investigate the causal relationship between NAFLD and changes in sleep traits using Mendelian randomization. Methods: We proposed a bidirectional Mendelian randomization (MR) analysis and performed validation analyses to dissect the association between NAFLD and sleep traits. Genetic instruments were used as proxies for NAFLD and sleep. Data of genome-wide association study(GWAS) were obtained from the center for neurogenomics and cognitive research database, Open GWAS database and GWAS catalog. Three MR methods were performed, including inverse variance weighted method(IVW), MR-Egger, weighted median. Results: In total,7 traits associated with sleep and 4 traits associated with NAFLD are used in this study. A total of six results showed significant differences. Insomnia was associated with NAFLD (OR(95% CI)= 2.25(1.18,4.27), P = 0.01), Alanine transaminase levels (OR(95% CI)= 2.79(1.70, 4.56), P =4.71×10-5) and percent liver fat(OR(95% CI)= 1.31(1.03,1.69), P = 0.03). Snoring was associated with percent liver fat (1.15(1.05,1.26), P =2×10-3), alanine transaminase levels (OR(95% CI)= 1.27(1.08,1.50), P =0.04).And dozing was associated with percent liver fat(1.14(1.02,1.26), P =0.02).For the remaining 50 outcomes, no significant or definitive association was yielded in MR analysis. Conclusion: Genetic evidence suggests putative causal relationships between NAFLD and a set of sleep traits, indicating that sleep traits deserves high priority in clinical practice. Not only the confirmed sleep apnea syndrome, but also the sleep duration and sleep state (such as insomnia) deserve clinical attention. Our study proves that the causal relationship between sleep characteristics and NAFLD is the cause of the change of sleep characteristics, while the onset of non-NAFLD is the cause of the change of sleep characteristics, and the causal relationship is one-way.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Distúrbios do Início e da Manutenção do Sono , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Alanina Transaminase , Estudo de Associação Genômica Ampla , Sono/genética
10.
Biomed Pharmacother ; 167: 115580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776640

RESUMO

Since the proposal of the neurovascular unit (NVU) theory, it has become almost mandatory for neuroprotective medicines against ischaemic stroke (IS) to focus on this unit. Refined Qingkailing (RQKL) is a compound composed of hyodeoxycholic acid, geniposide, baicalin and cholic acid, which has shown great potential in the treatment of IS, but its effect on NVU has not been fully studied. The purpose of this study was to investigate the potential biological pathways that underlie the protective effects of RQKL against NVU damage induced by oxygen-glucose deprivation and re-oxygenation (OGD/R). Using in vitro OGD/R models, we looked into whether RQKL protects the NVU. In order to create an in vitro NVU that resembles IS, we created an OGD/R injury model using primary cultures of brain microvascular endothelial cells, neurons, and astrocytes. Based on our results, we present evidence, for the first time, that RQKL treatment of the injury caused by OGD/R significantly (1) kept the blood brain barrier (BBB) functioning and maintained the architecture of the neurons, (2) mitigated the oxidative stress damage, inflammatory cytokine release, and neuronal death, and (3) upregulated the expression of neurotrophic factors generated from glial cells and the brain in the in vitro model. Therefore, RQKL has a variety of preventive effects against NVU damage caused by OGD/R. RQKL may be a suitable medication for treating IS in a clinical setting.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Humanos , Oxigênio/metabolismo , Isquemia Encefálica/metabolismo , Células Endoteliais , Glucose/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo
11.
Vascul Pharmacol ; 150: 107169, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059212

RESUMO

Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.


Assuntos
AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , Células Endoteliais/metabolismo , Acidente Vascular Cerebral/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endotélio Vascular/metabolismo , RNA Circular/metabolismo , AVC Isquêmico/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-22675376

RESUMO

Qingkailing (QKL) injection was a famous traditional Chinese patent medicine, which was extensively used to treat the acute stages of cerebrovascular disease. The aim of this study was to assess the quantity, quality and overall strength of the evidence on QKL in the treatment of acute ischemic stroke. Methods. An extensive search was performed within MEDLINE, Cochrane, CNKI, Vip and Wan-Fang up to November 2011. Randomized controlled trails (RCTs) on QKL for treatment of acute stroke were collected, irrespective of languages. Study selection, data extraction, quality assessment, and data analyses were conducted according to the Cochrane standards, and RevMan5 was used for data analysis. Results. 7 RCTs (545 patients) were included and the methodological quality was evaluated as generally low. The pooled results showed that QKL combined with conventional treatment was more effective in effect rate, and the score of MESSS and TNF-α level compared with conventional treatment alone, but there was no significant difference in mortality of two groups. Only one trial reported routine life status. There were four trials reported adverse events, and no obvious adverse event occurred in three trials while one reported adverse events described as eruption and dizziness.

13.
Artigo em Inglês | MEDLINE | ID: mdl-22536287

RESUMO

In the current study, we are investigating effect of refined QKL on ischemia-reperfusion-induced brain injury in mice. Methods. Mice were employed to induce ischemia-reperfusion injury of brain by middle cerebral artery occlusion (MCAO). RQKL solution was administered with different doses (0, 1.5, 3, and 6 mL/kg body weight) at the same time of onset of ischemia, and with the dose of 1.5 mL/kg at different time points (0, 1.5, 3, 6, and 9 h after MCAO). Neurological function and brain infarction were examined and cell apoptosis and ROS at prefrontal cortex were evaluated 24 h after MCAO, and western blot and intracellular calcium were also researched, respectively. Results. RQKL of all doses can improve neurological function and decrease brain infarction, and it performed significant effect in 0, 1.5, 3, and 6 h groups. Moreover, RQKL was able to reduce apoptotic process by reduction of caspase-3 expression, or restraint of eIF2a phosphorylation and caspase-12 activation. It was also able to reduce ROS and modulate intracellular calcium in the brain. Conclusion. RQKL can prevent ischemic-induced brain injury with a time window of 6 h, and its mechanism might be related to suppress ER stress-mediated apoptotic signaling.

14.
Front Neurosci ; 16: 943400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340795

RESUMO

There is yet no effective drug for Alzheimer's disease (AD) which is one of the world's most common neurodegenerative diseases. The Qin-Zhi-Zhu-Dan Formula (QZZD) is derived from a widely used Chinese patent drug-Qing-Kai-Ling Injection. It consists of Radix Scutellariae, Fructus Gardeniae, and Pulvis Fellis Suis. Recent study showed that QZZD and its effective components played important roles in anti-inflammation, antioxidative stress and preventing brain injury. It was noted that QZZD had protective effects on the brain, but the mechanism remained unclear. This study aims to investigate the mechanism of QZZD in the treatment of AD combining network pharmacology approach with experimental validation. In the network pharmacology analysis, a total of 15 active compounds of QZZD and 135 putative targets against AD were first obtained. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were then applied to clarify the biological mechanism. The anti-inflammatory mechanism of QZZD was proved, and a synthetic pathway-TNFR1-ERK1/2-NF-κBp65 signaling pathway was obtained. On the basis of the above discoveries, we further validated the protective effects QZZD on neurons with an APP/PS1 double transgenic mouse model. Weight change of the mice was monitored to assess QZZD's influence on the digestive system; water maze experiment was used for evaluating the effects on spatial learning and memory; Western blotting and immunohistochemistry analysis were used to detect the predicted key proteins in network pharmacology analysis, including Aß, IL-6, NF-κBp65, TNFR1, p-ERK1/2, and ERK1/2. We proved that QZZD could improve neuroinflammation and attenuate neuronal death without influencing the digestive system in APP/PS1 double transgenic mice with dementia. Combining animal pharmacodynamic experiments with network pharmacology analysis, we confirmed the importance of inflammation in pathogenesis of AD, clarified the pharmacodynamic characteristics of QZZD in treating AD, and proved its neuroprotective effects through the regulation of TNFR1-ERK1/2-NF-κBp65 signaling pathway, which might provide reference for studies on treatment of AD in the future.

15.
J Biosci Bioeng ; 133(2): 146-154, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34887181

RESUMO

As a kind of animal medicine, cattle bile has anti-inflammatory, antipyretic and cholagogic effects. The fermentation process of cattle bile is included in the application of many traditional Chinese medicines. In this study, we fermented cattle bile singly and investigated the impact of fermentation on the anti-inflammatory effect of cattle bile, as well as the mechanism of fermented cattle bile on microglia cells. After high temperature sterilization, cattle bile was fermented with Massa Medicata Fermentata (medicated leaven, Shen Qu). We used ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) to analyze the bile acids of cattle bile and fermented cattle bile. The results showed that 3-dehydrocholic acid, 7-ketolithocholic acid, 12-dehydrocholic acid, 12-Ketolithocholic acid, ursodeoxycholic acid and dehydrolithocholic acid increased more significantly than others; glycocholic acid and glycochenodeoxycholic acid decreased more significantly than others. After fermentation, cattle bile significantly reduced the release of NO and inflammatory factors (TNF-α and IL-1ß). Furthermore, the protein expression of TNF-α, IL-1ß and iNOS were decreased. In addition, we found that fermented cattle bile could have an anti-inflammatory effect through attenuating the activation of NLRP3 inflammasome. Thus, fermentation can enhance the anti-inflammatory effect of cattle bile. Fermented cattle bile has an anti-inflammatory effect by inhibiting the NLRP3 inflammasome pathway, which can expand the clinical application of cattle bile and provide new thoughts and methods for the application of cattle bile.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Anti-Inflamatórios/farmacologia , Bile/metabolismo , Bovinos , Medicamentos de Ervas Chinesas , Fermentação , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Espectrometria de Massas em Tandem
16.
J Ethnopharmacol ; 284: 114507, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384847

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Calculus bovis is commonly used in traditional Chinese medicine for the treatment of cerebrovascular diseases given its roles in clearing away heat, detoxification and pain relief. Calculus bovis is used the treatment of cerebral ischaemia, liver and gallbladder diseases and various inflammatory conditions. However, the mechanism of action of calculus bovis in the treatment of ischaemic stroke is not well understood. AIM OF THE STUDY: In this study, the anti-inflammatory, antioxidative and antiapoptotic effects of calculus bovis on neurovascular units were studied, and the mechanism of action of calculus bovis on neurovascular units was also discussed. MATERIALS AND METHODS: Neurons, astrocytes, and endothelial cells were used to construct models of brain neurovascular units in vitro. The oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) model was used to assess the effects of in vitro cultured calculus bovis on inflammatory factors, oxidative stress, and apoptosis. ZO-1, Occludin, Claudin-5, HIF-1, VEGF, PI3K, Akt, Bax, Bcl-2, and Caspase-3 expression was detected. RESULTS: In vitro cultured calculus bovis protects the blood-brain barrier; repairs tight junction proteins; increases ZO-1, Occludin and Claudin-5 protein expression; maintains TEER(transepithelial electrical resistance) values; repairs damaged endothelial cells; increases γ-GT activity; reduces LDH and inflammatory injury; and reduces TNF-α, LI-6, and IL-1ß levels. In vitro cultured calculus bovis reduces oxidative stress damage and NO and improves SOD activity. In vitro cultured calculus bovis protects neurons through antiapoptotic activities, including reductions in the apoptotic proteins Bax and Caspase-3, increases in Bcl-2 protein expression, and protection of brain neurovascular units through the HIF/VEGF and PI3K/Akt signalling pathways. CONCLUSION: In summary, the protective effect of calculus bovis on neurovascular units is achieved through antioxidative, anti-inflammatory and antiapoptotic effects. The mechanism of action of in vitro cultured calculus bovis in ischaemic stroke involves multiple targets and signalling pathways. The PI3K/Akt, HIF-1α and VEGF pathways effectively protect neurovascular units in the brain.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , AVC Isquêmico/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Bovinos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Farmacologia em Rede , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
J Ethnopharmacol ; 284: 114773, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699947

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baicalin is one of the major bioactive compounds extracted from the root of Scutellaria baicalensis Georgi, which was used to treat cerebral ischemia for thounds of years. However, its biological mechanisms remains to be further explored. AIM OF THE REVIEW: This study aims to identify potential biological mechanisms of baicalin against cerebral ischemia combining antibody-based array and bioinformatics analysis. METHODS: A rat model of middle cerebral artery occlusion (MCAO) was constructed. Sprague-Dawley rats were randomly divided into three groups: control group, ischemic model group, and baicalin 100 mg/kg treatment group respectively. Bederson score and 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining were examined to evaluate the pharmacodynamics of baicalin treatment. Antibody-based array technology, enzyme linked immunosorbent assay (ELISA), western-blot, molecular docking, transcription factor perdiction, hematoxylin and eosin (H&E), and immunofluorescence staining were used to study the regulation of baicalin on inflammatory response after cerebral ischemia in vivo. LPS-induced RAW 264.7 macrophage inflammation model was prepared to observe the anti-inflammatory effect of baicalin in vitro. RESULTS: Baicalin (100 mg/kg) reduced neurological injury score, cerebral infarction volume, and necrotic cells in MCAO rats. Baicalin inhibited the expression of CCL2, and reduced the phosphorylation levels of p65, IκBα protein and down-regulated level of CCR2. Besides, baicalin could bond to CCR2 directly, which prevented CCL2 from binding to CCR2. Furthermore, baicalin down-regulated the number of monocytes in the peripheral blood and improved the spleen index post-cerebral ischemia. In vitro, baicalin significantly inhibited the secretion of NO, IL6, TNFα, and CCL2 in macrophages and promoted the secretion of IL13, IFNG, and IL1a. CONCLUSIONS: Baicalin inhibited cerebral ischemia-induced activation of the NFκB/CCL2/CCR2 pathway with multiple target effect. These data promote the therapeutic utilization of baicalin in preventing cerebral ischemia clinically.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Quimiocina CCL2/metabolismo , Flavonoides/uso terapêutico , NF-kappa B/metabolismo , Receptores CCR2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Quimiocina CCL2/genética , Biologia Computacional , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/genética , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico/metabolismo , Fitoterapia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Receptores CCR2/genética , Scutellaria baicalensis/química , Transdução de Sinais/efeitos dos fármacos
18.
Front Pharmacol ; 13: 987997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091824

RESUMO

Background: Qinzhi Zhudan Formula (QZZD), optimized from Angong Niuhuang Wan, consists of Radix Scutellariae, Fructus Gardeniae and Pulvis Fellis Suis. We had investigated the neuroprotective effects of QZZD and its active components, and demonstrated that it could treat cerebral ischemia and dementia through multiple pathways and mechanisms. Nevertheless, toxicological data on this formula still remains limited. In the study, we sought to examine the toxicological effects of QZZD during the treatment and recovery periods. Methods: We investigated potential toxicities of QZZD in Sprague-Dawley (SD) rats via 28-day gavage administration. SD rats were randomly divided into control group and treatment groups of A (0.5 g/kg/d QZZD), B (1.5 g/kg/d QZZD), and C (5.0 g/kg/d QZZD). The 56-day course includes treatment period (administration with water or QZZD once a day for 28 consecutive days) and recovery period (28 days). The rats received daily monitoring of general signs of toxicity and mortality, as well as weekly determination of body weight and food consumption. Moreover, the complete blood cell count, biochemistry, coagulation, and urine indicators, organ weights, and histopathological report were analyzed respectively at the end of the treatment and recovery periods. Results: There was no death related to the active pharmaceutical ingredients of QZZD during the treatment period. The maximum no observed adverse effect level (NOAEL) was 0.5 g/kg/d, which is approximately 16.7 times of the equivalent dose of clinical dose in rats. In group TB (1.5 g/kg/d QZZD) and TC (5.0 g/kg/d QZZD), there were adverse effects of blue coloring of tail skin, weight loss, a significant increase of total bilirubin (TBIL), blackening of liver and kidney in gross examination, hyperplasia of bile duct and karyomegaly of hepatocytes in histopathological examination. Besides, in females rats, the food consumption was reduced, while in male rats, there was decrease in triglycerides (TG) and slight increase in white blood cell (WBC) count and neutrophils. In group TC (5.0 g/kg/d QZZD), the indicators of red blood cell (RBC) count, hemoglobin (HGB) and hematocrit (HCT) were decreased slightly, while the platelet count (PLT) was increased. However, these changes were not considered to be toxicologically significant because they resolved during the recovery period. Conclusion: Overall, QZZD exhibited a good safety profile. The maximum no observed adverse effect level was 0.5 g/kg/d, and no target organs toxicity were identified. The present findings might confirm the safety of QZZD in clinical practices.

19.
Neural Regen Res ; 17(10): 2247-2252, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259845

RESUMO

Pericytes, as the mural cells surrounding the microvasculature, play a critical role in the regulation of microcirculation; however, how these cells respond to ischemic stroke remains unclear. To determine the temporal alterations in pericytes after ischemia/reperfusion, we used the 1-hour middle cerebral artery occlusion model, which was examined at 2, 12, and 24 hours after reperfusion. Our results showed that in the reperfused regions, the cerebral blood flow decreased and the infarct volume increased with time. Furthermore, the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion. These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase. These findings provide strong evidence for explaining the "no-reflow" phenomenon that occurs after recanalization in clinical practice.

20.
Front Pharmacol ; 12: 599543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234667

RESUMO

Background: Baicalin (BCL), a candidate drug for ischemic stroke, has been indicated to protect neurons by promoting brain-derived neurotrophic factor (BDNF). However, the cellular source of BDNF release promoted by baicalin and its detailed protective mechanism after ischemia/reperfusion remains to be studied. The aim of this study was to investigate the neuroprotective mechanisms of baicalin against oxygen-glucose deprivation/reoxygenation (OGD/R) in a neuron-astrocyte coculture system and to explore whether the BDNF-TrkB pathway is involved. Methods and Results: A neuron-astrocyte coculture system was established to elucidate the role of astrocytes in neurons under OGD/R conditions. The results demonstrated that astrocytes became reactive astrocytes and released more BDNF in the coculture system to attenuate neuronal apoptosis and injury after OGD/R. BCL maintained the characteristics of reactive astrocytes and obviously increased the expression of cyclic AMP response element-binding protein (CREB) and the levels of BDNF in the coculture system after OGD/R. To further verify whether BDNF binding to its receptor tyrosine kinase receptor B (TrkB) was required for the neuroprotective effect of baicalin, we examined the effect of ANA-12, an antagonist of TrkB, on NA system injury, including oxidative stress, inflammation, and apoptosis induced by OGD/R. The results showed that treatment of NA systems with ANA-12 significantly attenuated the neuroprotection of BCL. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways are two important downstream cascades of signaling pathways activated by BDNF binding to TrkB. We investigated the expressions of TrkB, PI3K, Akt, MAPK, and ERK. The results demonstrated that baicalin significantly increased the expressions of TrkB, PI3K/AKT, and MAPK/ERK. Conclusion: The neuroprotective effects of baicalin against oxidative stress, inflammation, and apoptosis were improved by astrocytes, mainly mediated by increasing the release of BDNF and its associated receptor TrkB and downstream signaling regulators PI3K/Akt and MAPK/ERK1/2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA