Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 116: 329-348, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142917

RESUMO

BACKGROUND: Latent chronic inflammation has been proposed as a key mediator of multiple derangements in metabolic syndrome (MetS), which are increasingly becoming recognized as risk factors for age-related cognitive decline. However, the question remains whether latent chronic inflammation indeed induces brain inflammation and cognitive decline. METHODS: A mouse model of latent chronic inflammation was constructed by a chronic subcutaneous infusion of low dose lipopolysaccharide (LPS) for four weeks. A receptor for advanced glycation end products (RAGE) knockout mouse, a chimeric myeloid cell specific RAGE-deficient mouse established by bone marrow transplantation and a human endogenous secretory RAGE (esRAGE) overexpressing adenovirus system were utilized to examine the role of RAGE in vivo. The cognitive function was examined by a Y-maze test, and the expression level of genes was determined by quantitative RT-PCR, western blot, immunohistochemical staining, or ELISA assays. RESULTS: Latent chronic inflammation induced MetS features in C57BL/6J mice, which were associated with cognitive decline and brain inflammation characterized by microgliosis, monocyte infiltration and endothelial inflammation, without significant changes in circulating cytokines including TNF-α and IL-1ß. These changes as well as cognitive impairment were rescued in RAGE knockout mice or chimeric mice lacking RAGE in bone marrow cells. P-selectin glycoprotein ligand-1 (PSGL-1), a critical adhesion molecule, was induced in circulating mononuclear cells in latent chronic inflammation in wild-type but not RAGE knockout mice. These inflammatory changes and cognitive decline induced in the wild-type mice were ameliorated by an adenoviral increase in circulating esRAGE. Meanwhile, chimeric RAGE knockout mice possessing RAGE in myeloid cells were still resistant to cognitive decline and brain inflammation. CONCLUSIONS: These findings indicate that RAGE in inflammatory cells is necessary to mediate stimuli of latent chronic inflammation that cause brain inflammation and cognitive decline, potentially by orchestrating monocyte activation via regulation of PSGL-1 expression. Our results also suggest esRAGE-mediated inflammatory regulation as a potential therapeutic option for cognitive dysfunction in MetS with latent chronic inflammation.


Assuntos
Disfunção Cognitiva , Encefalite , Síndrome Metabólica , Animais , Humanos , Camundongos , Inflamação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada
2.
Rev Endocr Metab Disord ; 24(2): 327-343, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715824

RESUMO

Hyperuricemia is a metabolic disease caused by purine nucleotide metabolism disorder. The prevalence of hyperuricemia is increasing worldwide, with a growing trend in the younger populations. Although numerous studies have indicated that hyperuricemia may be an independent risk factor for insulin resistance, the causal relationship between the two is controversial. There are few reviews, however, focusing on the relationship between uric acid (UA) and insulin resistance from experimental studies. In this review, we summarized the experimental models related to soluble UA-induced insulin resistance in pancreas and peripheral tissues, including skeletal muscles, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells and macrophages. In addition, we summarized the research advances about the key mechanism of UA-induced insulin resistance. Moreover, we attempt to identify novel targets for the treatment of hyperuricemia-related insulin resistance. Lastly, we hope that the present review will encourage further researches to solve the chicken-and-egg dilemma between UA and insulin resistance, and provide strategies for the pathogenesis and treatment of hyperuricemia related metabolic diseases.


Assuntos
Hiperuricemia , Resistência à Insulina , Humanos , Ácido Úrico/metabolismo , Insulina , Hiperuricemia/metabolismo , Células Endoteliais/metabolismo
3.
Pharm Biol ; 60(1): 334-346, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35171059

RESUMO

CONTEXT: Acute ischaemic stroke (AIS) is a major cause of disability and death, which is a serious threat to human health and life. Wasp venom extracted from Vespa magnifica Smith (Vespidae) could treat major neurological disorders. OBJECTIVE: This study investigated the effects of wasp venom on AIS in rats. MATERIAL AND METHODS: We used a transient middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats (260-280 g, n = 8-15) with a sham operation group being treated as negative control. MCAO rats were treated with wasp venom (0.05, 0.2 and 0.6 mg/kg, i.p.) using intraperitoneal injection. After treatment 48 h, behavioural tests, cortical blood flow (CBF), TTC staining, H&E staining, Nissl staining, TUNEL assay, immunohistochemistry (IHC) and ELISA were employed to investigate neuroprotective effects of wasp venom. RESULTS: Compared with the MCAO group, wasp venom (0.6 mg/kg) improved neurological impairment, accelerated CBF recovery (205.6 ± 52.92 versus 216.7 ± 34.56), reduced infarct volume (337.1 ± 113.2 versus 140.7 ± 98.03) as well as BBB permeability as evidenced by changes in claudin-5 and AQP4. In addition, function recovery of stroke by wasp venom treatment was associated with a decrease in TNF-α, IL-1ß, IL-6 and inhibition activated microglia as well as apoptosis. Simultaneously, the wasp venom regulated the angiogenesis factors VEGF and b-FGF in the brain. CONCLUSIONS: Wasp venom exhibited a potential neuroprotective effect for AIS. In the future, we will focus on determining whether the observed actions were due to a single compound or the interaction of multiple components of the venom.


Assuntos
Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Venenos de Vespas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infarto da Artéria Cerebral Média , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Venenos de Vespas/administração & dosagem , Vespas
4.
Am J Physiol Endocrinol Metab ; 320(6): E1032-E1043, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900847

RESUMO

Uric acid is the end metabolite derived from the oxidation of purine compounds. Overwhelming evidence shows the vital interrelationship between hyperuricemia (HUA) and nonalcoholic fatty liver disease (NAFLD). However, the mechanisms for this association remain unclear. In this study, we established a urate oxidase-knockout (Uox-KO) mouse model by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. To study the correlation between HUA and NAFLD, human HepG2 hepatoma cells were treated in culture medium with high level of uric acid. In vivo, the Uox-KO mice spontaneously developed hyperuricemia and aberrant lipid-metabolism, concomitant with abnormal hepatic fat accumulation. HUA activated c-Jun N-terminal kinase (JNK) in vivo and in vitro. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased fat accumulation and lipogenic gene expression induced by HUA. Overexpression of the lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase 1 was via activation of JNK, which was blocked by the JNK inhibitor SP600125. HUA activated AP-1 to upregulate lipogenic gene expression via JNK activation. In addition, HUA caused mitochondrial dysfunction and reactive oxygen species production. Pretreatment with the antioxidant N-acetyl-l-cysteine could ameliorate HUA-activated JNK and hepatic steatosis. These data suggest that ROS/JNK/AP-1 signaling plays an important role in HUA-mediated fat accumulation in liver.NEW & NOTEWORTHY Hyperuricemia and nonalcoholic fatty liver disease are global public health problems, which are strongly associated with metabolic syndrome. In this study, we demonstrate that uric acid induces hepatic fat accumulation via the ROS/JNK/AP-1 pathway. This study identifies a new mechanism of NAFLD pathogenesis and new potential therapeutic strategies for HUA-induced NAFLD.


Assuntos
Hiperuricemia/metabolismo , Fígado/efeitos dos fármacos , Ácido Úrico/farmacologia , Animais , Células Hep G2 , Humanos , Hiperuricemia/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Ácido Úrico/metabolismo
5.
Biochem Biophys Res Commun ; 540: 22-28, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429196

RESUMO

Mounting evidence has implicated inflammation in ischemia-reperfusion injury following acute ischemic stroke (AIS). Microglia remain the primary initiator and participant of brain inflammation. Emerging evidence has indicated that uric acid has promise for the treatment of AIS, but its explicit mechanisms remain elusive. Here, we observed that uric acid reduced the severity of cerebral infarction and attenuated the activation of microglia in the cerebral cortex in a mouse middle cerebral-artery occlusion/reperfusion model. Thus, we speculated that uric acid may play a role by directly interfering with the inflammatory response of microglia. First, we investigated whether the HMGB1-TLR4-NF-κB signaling plays a role in oxygen glucose deprivation and reperfusion (OGD/R) injury of BV2 cells. Inhibition of the signaling significantly reduced the release of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1ß (IL1ß), and IL6 caused by OGD/R in BV2 cells. Second, uric acid weakened the decreased cell viability and lactate dehydrogenase release induced by OGD/R in BV2 cells. Finally, uric acid reduced the release of the proinflammatory cytokines TNF-α, IL1ß, and IL6 caused by OGD/R in BV2 cells by dampening HMGB1-TLR4-NF-κB signaling, which was reversed by probenecid treatment, an inhibitor of the uric acid channel. Hence, uric acid halted the release of inflammatory factors and the decreased cell viability induced by ODG/R via inhibiting the microglia HMGB1-TLR4-NF-κB signaling, thereby alleviating the damage to microglia. This may be part of the molecular mechanisms by which uric acid protects mice against the brain damage of middle cerebral-artery occlusion/reperfusion.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Glucose/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Microglia/efeitos dos fármacos , Ácido Úrico/farmacologia , Ácido Úrico/uso terapêutico , Animais , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , Probenecid/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ácido Úrico/metabolismo
6.
Clin Rehabil ; 35(1): 64-79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32954819

RESUMO

OBJECTIVE: To systematically review the effects of Tai Chi exercise as a nonpharmacological therapeutic strategy on the physical and mental health in individuals with knee osteoarthritis. DATA SOURCES: A systematic literature retrieval has been conducted in PubMed, Web of Science, EMbase, CENTRAL, OVID, CINAHL, Physiotherapy Evidence Database, Chinese Biomedical Database and China National Knowledge Infrastructure up to June 2020 to identify the relevant randomised controlled trials (RCTs). METHODS: Two authors assessed independently the risk of bias using the Cochrane Collaboration's tool. Standardised mean difference (SMD) and 95% CI were calculated and data were combined using the fixed or random-effect model. The strength of evidence was rated with Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. RESULTS: A total of 16 RCTs involving 986 patients with knee osteoarthritis met the established inclusion criteria. The strength of evidence for the main outcomes was low or moderate. The systematic review illustrated the efficacy of Tai Chi exercise in treating and managing knee osteoarthritis. Patients' outcomes practising Tai Chi exercise were improved significantly, including pain (SMD = ‒0.69, 95%CI: ‒0.95 to ‒0.44, P < 0.001), stiffness (SMD = ‒0.59, 95%CI: ‒0.91 to ‒0.27, P < 0.001), physical function (SMD = ‒0.92, 95%CI: -1.16 to ‒0.69, P < 0.001), dynamic balance (SMD = 0.69, 95%CI: 0.38 to 0.99, P < 0.001), physiological and psychological health (SF-36 PCS: SMD = 0.48, 95%CI: 0.28 to 0.68, P < 0.001; SF-36 MCS: SMD = 0.26, 95%CI: 0.06 to 0.45, P = 0.01). No adverse events associated with Tai Chi exercise were reported. CONCLUSION: Tai Chi exercise was beneficial for ameliorating physical and mental health of patients with knee osteoarthritis and should be available as an alternative non-pharmacological therapy in rehabilitation programmes.


Assuntos
Osteoartrite do Joelho/reabilitação , Tai Chi Chuan , Exercício Físico , Humanos , Saúde Mental , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/psicologia
7.
Cell Physiol Biochem ; 45(3): 1156-1164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444507

RESUMO

BACKGROUND/AIMS: Clinical studies have shown that hyperuricaemia is strongly associated with cardiovascular disease. However, the molecular mechanisms of high uric acid (HUA) associated with cardiovascular disease remain poorly understood. In this study, we investigated the effect of HUA on cardiomyocytes. METHODS: We exposed H9c2 cardiomyocytes to HUA, then cell viability was determined by MTT assay, and reactive oxygen species' (ROS) production was detected by a fluorescence assay. Western blot analysis was used to examine phosphorylation of extracellular signal-regulated kinase (ERK), p38, phosphatidylinositol 3-kinase (PI3K) and Akt. We monitored the impact of HUA on phospho-ERK and phospho-p38 levels in myocardial tissue from an acute hyperuricaemia mouse model established by potassium oxonate treatment. RESULTS: HUA decreased cardiomyocyte viability and increased ROS production in cardiomyocytes; pre-treatment with N-acetyl-L-cysteine, a ROS scavenger, and PD98059, an ERK inhibitor, reversed HUA-inhibited viability of cardiomyocytes. Further examination of signal transduction pathways revealed HUA-induced ROS involved in activating ERK/P38 and inhibiting PI3K/Akt in cardiomyocytes. Furthermore, the acute hyperuricaemic mouse model showed an increased phospho-ERK/p38 level in myocardial tissues. CONCLUSION: HUA induced oxidative damage and inhibited the viability of cardiomyocytes by activating ERK/p38 signalling, for a novel potential mechanism of hyperuricaemic-related cardiovascular disease.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ácido Úrico/toxicidade , Acetilcisteína/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Hiperuricemia/sangue , Hiperuricemia/induzido quimicamente , Hiperuricemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Cancer Sci ; 107(12): 1806-1817, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27636742

RESUMO

Metformin is an oral biguanide commonly used for treating type II diabetes and has recently been reported to possess antiproliferative properties that can be exploited for the prevention and treatment of a variety of cancers. The mechanisms underlying this effect have not been fully elucidated. Our study shows a marked loss of AMP-activated protein kinase (AMPK) phosphorylation and nuclear human Forkhead box O1 (FOXO1) protein in estrogen-dependent endometrial cancer (EC) tumors compared to normal control endometrium. Metformin treatment suppressed EC cell growth in a time-dependent manner in vitro; this effect was cancelled by cotreatment with an AMPK inhibitor, compound C. Metformin decreased FOXO1 phosphorylation and increased FOXO1 nuclear localization in Ishikawa and HEC-1B cells, with non-significant increase in FOXO1 mRNA expression. Moreover, compound C blocked the metformin-induced changes of FOXO1 and its phosphorylation protein, suggesting that metformin upregulated FOXO1 activity by AMPK activation. Similar results were obtained after treatment with insulin. In addition, transfection with siRNA for FOXO1 cancelled metformin-inhibited cell growth, indicating that FOXO1 mediated metformin to inhibit EC cell proliferation. A xenograft mouse model further revealed that metformin suppressed HEC-1B tumor growth, accompanied by downregulated ki-67 and upregulated AMPK phosphorylation and nuclear FOXO1 protein. Taken together, these data provide a novel mechanism of antineoplastic effect for metformin through the regulation of FOXO1, and suggest that the AMPK-FOXO1 pathway may be a therapeutic target to the development of new antineoplastic drugs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Estrogênios/metabolismo , Proteína Forkhead Box O1/metabolismo , Metformina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Ativação Enzimática , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Physiol Biochem ; 40(3-4): 538-548, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27889764

RESUMO

BACKGROUND/AIMS: Hyperuricemia is part of the metabolic-syndrome cluster of abdominal obesity, impaired glucose tolerance, insulin resistance, dyslipidemia, and hypertension. Monocytes/macrophages are critical in the development of metabolic syndrome, including gout, obesity and atherosclerosis. However, how high uric acid (HUA) exposure affects monocyte/macrophage function remains unclear. In this study, we investigated the molecular mechanism of HUA exposure in monocytes/macrophages and its impact on oxidized low-density lipoprotein (oxLDL)-induced foam-cell formation in a human monocytic cell line, THP-1. METHODS: We primed THP-1 cells with phorbol-12-myristate-13-acetate (PMA) for differentiation, then exposed cells to HUA and detected the production of reactive oxygen species (ROS) and analyzed the level of phospho-AMPKα. THP-1 cells were pre-incubated with Compound C, an AMPK inhibitor, or N-acetyl-L-cysteine (NAC), a ROS scavenger, or HUA before PMA, to assess CD68 expression and phospho-AMPKα level. PMA-primed THP-1 cells were pre-treated with oxLDL before Compound C and HUA treatment. Western blot analysis was used to examine the levels of phospho-AMPKα, CD68, ABCG1, ABCA1, cyclooxygenase-2 (COX-2) and NF-κB (p65). Flow cytometry was used to assess ROS production and CD68 expression in live cells. Oil-red O staining was used to observe oxLDL uptake in cells. RESULTS: HUA treatment increased ROS production in PMA-primed THP-1 cells; NAC blocked HUA-induced oxidative stress. HUA treatment time-dependently increased phospho-AMPKα level in PMA-primed THP-1 cells. The HUA-induced oxidative stress increased phospho-AMPKα levels, which was blocked by NAC. HUA treatment impaired CD68 expression during cell differentiation by activating the AMPK pathway, which was reversed by Compound C treatment. Finally, HUA treatment inhibited oxLDL uptake in the formation of foam cells in THP-1 cells, which was blocked by Compound C treatment. HUA treatment significantly increased the expression of ABCG1 and reversed the oxLDL-reduced ABCG1 expression but did not affect the expression of ABCA1, NF-κB (p65) or COX-2. CONCLUSIONS: HUA exposure activated the ROS-AMPK pathway, impaired CD68 expression, and inhibited oxLDL-induced foam-cell formation in a human monocytic cell line, THP-1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Espumosas/citologia , Lipoproteínas LDL/farmacologia , Monócitos/citologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Úrico/farmacologia , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetilcisteína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Humanos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
10.
Circ J ; 79(12): 2659-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477273

RESUMO

BACKGROUND: Hyperuricemia induces endothelial dysfunction, oxidative stress and inflammation, increasing cardiovascular morbidities. It also raises the incidence of atrial fibrillation; however, underlying mechanisms are unknown. METHODS AND RESULTS: The effects of urate on expression of Kv1.5 in cultured mouse atrial myocytes (HL-1 cells) using reverse transcriptase-PCR, immunoblots, flow cytometry and patch-clamp experiments were studied. Treatment with urate at 7 mg/dl for 24 h increased the Kv1.5 protein level, enhanced ultra-rapid delayed-rectifier K(+)channel currents and shortened action potential duration in HL-1 cells. HL-1 cells expressed the influx uric acid transporter (UAT), URATv1, and the efflux UATs, ABCG2 and MRP4. An inhibitor against URATv1, benzbromarone, abolished the urate effects, whereas an inhibitor against ABCG2, KO143, augmented them. Flow cytometry showed that urate induced an increase in reactive oxygen species, which was abolished by the antioxidant, N-acetylcysteine (NAC), and the NADPH-oxidase inhibitor, apocynin. Both NAC and apocynin abolished the enhancing effects of urate on Kv1.5 expression. A urate-induced increase in the Kv1.5 proteins was accompanied by phosphorylation of extracellular signal-regulated kinase (ERK), and was abolished by an ERK inhibitor, PD98059. NAC abolished phosphorylation of ERK by urate. CONCLUSIONS: Intracellular urate taken up by UATs enhanced Kv1.5 protein expression and function in HL-1 atrial myocytes, which could be attributable to ERK phosphorylation and oxidative stress derived from nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hiperuricemia/metabolismo , Canal de Potássio Kv1.5/biossíntese , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Ácido Úrico/farmacologia , Animais , Linhagem Celular , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Hiperuricemia/patologia , Canal de Potássio Kv1.5/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
11.
BMC Endocr Disord ; 15: 11, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25887856

RESUMO

BACKGROUND: Insulin resistance triggered by excess fat is a key pathogenic factor that promotes type 2 diabetes. Understanding molecular mechanisms of insulin resistance may lead to the identification of a novel therapeutic target for type 2 diabetes. AMPD1, an isoform of AMP deaminase (AMPD), is suggested to play roles in the regulation of glucose metabolism through controlling AMP-activated protein kinase (AMPK) activation. We reported that the diet-induced insulin resistance was improved in AMPD1-deficient mice compared to wild type mice. To further delineate this observation, we studied changes of insulin signaling in skeletal muscle of wild type (WT) and AMPD1-deficient mice. METHODS: Phosphorylation levels of kinases and expression levels of mTOR components were quantified by immunoblotting using protein extracts from tissues. The interaction between mTOR and Raptor was determined by immunoblotting of mTOR immunoprecipitates with anti-Raptor antibody. Gene expression was studied by quantitative PCR using RNA extracted from tissues. RESULTS: Phosphorylation levels of AMPK, Akt and p70 S6 kinase in skeletal muscle were higher in AMPD1-deficient mice compared to WT mice after high fat diet challenge, while they did not show such difference in normal chow diet. Also, no significant changes in phosphorylation levels of AMPK, Akt or p70 S6 kinase were observed in liver and white adipose tissue between WT and AMPD1-deficient mice. The expression levels of mTOR, Raptor and Rictor tended to be increased by AMPD1 deficiency compared to WT after high fat diet challenge. AMPD1 deficiency increased Raptor-bound mTOR in skeletal muscle compared to WT after high fat diet challenge. Gene expression of peroxisome proliferator-activated receptor-γ coactivator 1α and ß, downstream targets of p70 S6 kinase, in skeletal muscles was not changed significantly by AMPD1 deficiency compared to the wild type after high fat diet challenge. CONCLUSION: These data suggest that AMPD1 deficiency activates AMPK/Akt/mTORC1/p70 S6 kinase axis in skeletal muscle after high fat diet challenge, but not in normal chow diet. These changes may contribute to improve insulin resistance.


Assuntos
AMP Desaminase/genética , Resistência à Insulina/genética , Complexos Multiproteicos/genética , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , AMP Desaminase/metabolismo , Adenilato Quinase/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Biochem Biophys Res Commun ; 447(4): 707-14, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24769205

RESUMO

BACKGROUND AND AIM: Accumulating clinical evidence suggests that hyperuricemia is strongly associated with abnormal glucose metabolism and insulin resistance. However, how high uric acid (HUA) level causes insulin resistance remains unclear. We aimed to determine the direct role of HUA in insulin resistance in vitro and in vivo in mice. METHODS: An acute hyperuricemia mouse model was created by potassium oxonate treatment, and the impact of HUA level on insulin resistance was investigated by glucose tolerance test, insulin tolerance test and insulin signalling, including phosphorylation of insulin receptor substrate 1 (IRS1) and Akt. HepG2 cells were exposed to HUA treatment and N-acetylcysteine (NAC), reactive oxygen species scavenger; IRS1 and Akt phosphorylation was detected by Western blot analysis after insulin treatment. RESULTS: Hyperuricemic mice showed impaired glucose tolerance with insulin resistance. Hyperuricemia inhibited phospho-Akt (Ser473) response to insulin and increased phosphor-IRS1 (Ser307) in liver, muscle and fat tissues. HUA induced oxidative stress, and the antioxidant NAC blocked HUA-induced IRS1 activation and Akt inhibition in HepG2 cells. CONCLUSION: This study supplies the first evidence of HUA directly inducing insulin resistance in vivo and in vitro. Increased uric acid level may inhibit IRS1 and Akt insulin signalling and induce insulin resistance. The reactive oxygen species pathway plays a key role in HUA-induced insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Insulina/metabolismo , Ácido Úrico/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Células Hep G2 , Humanos , Hiperuricemia/complicações , Hiperuricemia/metabolismo , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
BMC Endocr Disord ; 14: 96, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25511531

RESUMO

BACKGROUND: Insulin resistance is one of the hallmark manifestations of obesity and Type II diabetes and reversal of this pathogenic abnormality is an attractive target for new therapies for Type II diabetes. A recent report that metformin, a drug known to reverse insulin resistance, demonstrated in vitro the metformin can inhibit AMP deaminase (AMPD) activity. Skeletal muscle is one of the primary organs contributing to insulin resistance and that the AMPD1 gene is selectively expressed at high levels in skeletal muscle. METHODS: Recognizing the background above, we asked if genetic disruption of the AMPD1 gene might ameliorate the manifestations of insulin resistance. AMPD1 deficient homozygous mice and control mice fed normal chow diet or a high-fat diet, and blood analysis, glucose tolerance test and insulin tolerance test were performed. Also, skeletal muscle metabolism and gene expression including nucleotide levels and activation of AMP activated protein kinase (AMP kinase) were evaluated in both conditions. RESULTS: Disruption of the AMPD1 gene leads to a less severe state of insulin resistance, improved glucose tolerance and enhanced insulin clearance in mice fed a high fat diet. Given the central role of AMP kinase in insulin action, and its response to changes in AMP concentrations in the cell, we examined the skeletal muscle of the AMPD1 deficient mice and found that they have greater AMP kinase activity as evidenced by higher levels of phosphorylated AMP kinase. CONCLUSIONS: Taken together these data suggest that AMPD may be a new drug target for the reversal of insulin resistance and the treatment of Type II diabetes.


Assuntos
AMP Desaminase/genética , AMP Desaminase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Obesidade/etiologia
14.
Clin Exp Hypertens ; 36(7): 447-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24433018

RESUMO

PURPOSE: To examine effects of a long-acting calcium channel blocker (CCB) azelnidipine on uric acid metabolism in hypertensive patients. METHODS: Azelnidipine was administered to 72 patients at a daily dose of 8 mg or 16 mg. In 22 cases out of the 72 patients, a different CCB was switched to azelnidipine. Blood pressure was measured and biochemical parameters of blood and urine were evaluated before and 2-3 months after the administration. RESULTS: Azelnidipine significantly decreased both systolic and diastolic blood pressure and the heart rate. It decreased both serum urate levels and the urinary uric acid to creatinine ratio (Uur/Ucr), but did not affect the uric acid clearance to creatinine clearance ratio (Cur/Ccr). Azelnidipine decreased both Uur/Ucr and Cur/Ccr in patients with Uur/Ucr ≥ 0.5 or ≥ 0.34, although it did not change these clearance parameters in patients with Uur/Ucr <0.5 or <0.34. Azelnidipine decreased the serum urate levels and Uur/Ucr in hyperuricemic patients with uric acid levels ≥ 7.0 mg/dL in males and ≥ 6.0 mg/dL in females. It did not change these parameters in normouricemic patients with serum urate levels <7.0 mg/dL in males and <6.0 mg/dL in females. Azelnidipine decreased Uur/Ucr and Cur/Ccr in hyperuricemic patients with normal or over excretion of uric acid, although it did not change these clearance parameters in hyperuricemic patients with uric acid hypoexcretion. CONCLUSIONS: Azelnidipine decreased the serum urate acid levels and Uur/Ucr, and this response was most prominent in hyperuricemic patients or patients with normal and over excretion of uric acid.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Bloqueadores dos Canais de Cálcio/uso terapêutico , Di-Hidropiridinas/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hiperuricemia/tratamento farmacológico , Ácido Úrico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ácido Azetidinocarboxílico/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Creatinina/metabolismo , Hipertensão Essencial , Feminino , Humanos , Hipertensão/complicações , Hiperuricemia/complicações , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/sangue , Ácido Úrico/urina
15.
Genes Cells ; 17(11): 913-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23078545

RESUMO

AMP deaminase (AMPD) catalyzes AMP to IMP and plays an important role in energy charge and nucleotide metabolism. Human AMPD3 deficiency is a type of erythrocyte-specific enzyme deficiency found in individuals without clinical symptoms, although an increased level of ATP in erythrocytes has been reported. To better understand the physiological and pathological roles of AMPD3 deficiency, we established a line of AMPD3-deficient [A3(-/-)] mice. No AMPD activity and a high level of ATP were observed in erythrocytes of these mice, similar to human RBC-AMPD3 deficiency, while other characteristics were unremarkable. Next, we created AMPD3 and pyruvate kinase (PK) double-deficient [PKA(-/-,-/-)] mice by mating A3(-/-) mice with CBA-Pk-1slc/Pk-1slc mice [PK(-/-)], a spontaneous PK-deficient strain showing hemolytic anemia. In PKA(-/-,-/-) mice, the level of ATP in red blood cells was increased 1.5 times as compared to PK(-/-) mice, although hemolytic anemia in those animals was not improved. In addition, we observed osmotic fragility of erythrocytes in A3(-/-) mice under fasting conditions. In contrast, the ATP level in erythrocytes was elevated in A3(-/-) mice as compared to the control. In conclusion, AMPD3 deficiency increases the level of ATP in erythrocytes, but does not improve anemia due to PK deficiency and leads to erythrocyte dysfunction.


Assuntos
AMP Desaminase/deficiência , Trifosfato de Adenosina/metabolismo , Anemia Hemolítica/enzimologia , Eritrócitos/enzimologia , Piruvato Quinase/deficiência , AMP Desaminase/genética , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Anemia Hemolítica/genética , Animais , Células Cultivadas , Contagem de Eritrócitos , Eritrócitos/metabolismo , Feminino , Privação de Alimentos , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragilidade Osmótica , Piruvato Quinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
16.
Genes Cells ; 17(1): 28-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22212473

RESUMO

The AMPD2 gene, a member of the AMPD gene family encoding AMP deaminase, is widely expressed in nonmuscle tissues including kidney, although its functions have not been fully elucidated. In this study, we studied the function of the AMPD2 gene by establishing AMPD2-deficient model animal. We established AMPD2 knockout mice by using gene transfer and homologous recombination in murine ES cells and studied phenotypes and functions in the kidneys of these animals. AMPD activity was decreased from 22.9 mIU/mg protein to 2.5 mIU/mg protein in the kidneys of AMPD knockout mice. In addition to changes in nucleotide metabolism in the kidneys, proteinuria was found in 3-week-old AMPD2 knockout mice, followed by a further increment up to a peak level at 6 weeks old (up to 0.6 g/dL). The major protein component in the urine of AMPD2 knockout mice was found to be albumin, indicating that AMPD2 may have a key role in glomerular filtration. Indeed, an ultrastructure study of glomerulus specimens from these mice showed effacement of the podocyte foot processes, resembling minimal-change nephropathy in humans. Based on our results, we concluded that AMPD2 deficiency induces imbalanced nucleotide metabolism and proteinuria, probably due to podocyte dysfunction.


Assuntos
Glomérulos Renais/patologia , Rim/metabolismo , Nucleotídeo Desaminases/metabolismo , Nucleotídeos/metabolismo , Proteinúria/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/fisiopatologia , AMP Desaminase/deficiência , AMP Desaminase/genética , Animais , Glomérulos Renais/metabolismo , Camundongos , Camundongos Knockout , Proteinúria/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/patologia
17.
World J Clin Cases ; 11(28): 6670-6679, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37901031

RESUMO

ß cells are the main cells responsible for the hypoglycemic function of pancreatic islets, and the insulin secreted by these cells is the only hormone that lowers blood glucose levels in the human body. ß cells are regulated by various factors, among which neurotransmitters make an important contribution. This paper discusses the effects of neurotransmitters secreted by various sympathetic and parasympathetic nerves on ß cells and summarizes the mechanisms by which various neurotransmitters regulate insulin secretion. Many neurotransmitters do not have a single source and are not only released from nerve terminals but also synthesized by ß cells themselves, allowing them to synergistically regulate insulin secretion. Almost all of these neurotransmitters depend on the presence of glucose to function, and their actions are mostly related to the Ca2+ and cAMP concentrations. Although neurotransmitters have been extensively studied, many of their mechanisms remain unclear and require further exploration by researchers.

18.
Biosci Rep ; 43(5)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37057886

RESUMO

SNAP25 is a core protein of the SNARE complex, which mediates stimulus-dependent secretion of insulin from the pancreatic ß cells. SNAP23 is a SNAP25 homolog, however, the functional role of SNAP23 in the exocytic secretion of insulin is not known. Therefore, in the present study, we investigated the functional role of SNAP23 in the insulin secretory pathway. Our results demonstrated that over-expression of SNAP23 inhibited the secretion of insulin from the INS-1 cells. Conversely, SNAP23 depletion increased insulin secretion. Mechanistically, overexpression of SNAP23 decreased SNARE complex formation by blocking the binding of SNAP25 to STX1A. The full-length SNAP23 protein with the N-terminal and C-terminal SNARE binding domains was required for competition. Moreover, SNAP23 serine 95 phosphorylation plays a crucial function in insulin secretion by enhancing the interaction between SNAP23 and STX1A. The present study presents a new pathway regulating insulin secretion. Therefore, SNAP23 may be a potential therapeutic target for diabetes mellitus.


Assuntos
Proteínas Qb-SNARE , Proteínas de Transporte Vesicular , Insulina/metabolismo , Secreção de Insulina , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Ratos
19.
Mol Cell Endocrinol ; 577: 112039, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567359

RESUMO

Dysregulation of hepatic glucose and lipid metabolism can instigate the onset of various metabolic disorders including obesity, dyslipidemia, insulin resistance, type 2 diabetes, and fatty liver disease. Adenosine monophosphate (AMP) deaminase (AMPD), which converts AMP to inosine monophosphate, plays a key role in maintaining adenylate energy charge. AMPD2 is the major isoform present in the liver. However, the mechanistic link between AMPD2 and hepatic glucose and lipid metabolism remains elusive. In this study, we probed into the hepatic glucose and lipid metabolism in AMPD2-deficient (A2-/-) mice. These mice exhibited reduced body weight, fat accumulation, and blood glucose levels, coupled with enhanced insulin sensitivity while maintaining consistent calorie intake and spontaneous motor activity compared with wild type mice. Furthermore, A2-/- mice showed mitigated obesity and hyper-insulinemia induced by high-fat diet (HFD) but elevated levels of the serum triglyceride and cholesterol. The hepatic mRNA levels of several fatty acid and cholesterol metabolism-related genes were altered in A2-/- mice. RNA sequencing unveiled multiple alterations in lipid metabolic pathways due to AMPD2 deficiency. These mice were also more susceptible to fasting or HFD-induced hepatic lipid accumulation. The liver exhibited elevated AMP levels but unaltered AMP/ATP ratio. In addition, AMPD2 deficiency is not associated with the adenosine production. In summary, this study established a link between purine metabolism and hepatic glucose and lipid metabolism via AMPD2, providing novel insights into these metabolic pathways.


Assuntos
AMP Desaminase , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Resistência à Insulina/fisiologia , AMP Desaminase/genética , AMP Desaminase/metabolismo , Colesterol/metabolismo , Monofosfato de Adenosina/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
20.
J Atheroscler Thromb ; 30(9): 1176-1186, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436875

RESUMO

AIMS: Acute rupture or erosion of unstable atherosclerotic plaques is a major cause of adverse consequences of atherosclerotic cardiovascular disease, often leading to myocardial infarction or stroke. High uric acid (HUA) is associated with the increasing risk of cardiovascular events and death. However, the mechanism by which HUA promotes atherosclerosis and whether HUA affects plaque stability are still unclear. METHODS: We constructed an atherosclerotic Apoe-/- mouse model with HUA. The progression of atherosclerosis and plaques was determined by Oil Red O staining, hematoxylin and eosin (H&E) staining, and Masson staining. TdT-mediated dUTP nick-end labeling assay and immunohistochemistry were used to observe the changes of apoptosis and autophagy in plaques, respectively. Then, we validated the in vivo results with RAW 264.7 cell line. RESULTS: HUA promoted atherosclerosis and exacerbated plaque vulnerability, including significantly increased macrophage infiltration, lipid accumulation, enlarged necrotic cores, and decreased collagen fibers. HUA increased cell apoptosis and inhibited autophagy in plaques. In vitro results showed that HUA decreased cell viability and increased cell apoptosis in foam cells macrophages treated with oxidized low-density lipoprotein. An activator of autophagy, rapamycin, can partially reverse the increasing apoptosis. CONCLUSION: HUA promoted atherosclerosis and exacerbated plaque vulnerability, and HUA facilitates foam cell apoptosis by inhibiting autophagy.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Ácido Úrico , Camundongos Knockout , Aterosclerose/metabolismo , Autofagia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA