Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 130(1): 199-209, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12226500

RESUMO

We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.


Assuntos
Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Ácidos Indolacéticos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Transporte Biológico/fisiologia , Fluorenos/farmacologia , Glucuronidase/genética , Glucuronidase/metabolismo , Imuno-Histoquímica , Ácidos Indolacéticos/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Ftalimidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Ácidos Tri-Iodobenzoicos/farmacologia
2.
Development ; 131(21): 5341-51, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15486337

RESUMO

Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Diferenciação Celular , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassinosteroides , Colestanóis/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Homologia de Sequência , Esteroides Heterocíclicos/metabolismo
3.
Plant Physiol ; 134(3): 995-1005, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14963244

RESUMO

A seed marks the transition between two developmental states; a plant is an embryo during seed formation, whereas it is a seedling after emergence from the seed. Two factors have been identified in Arabidopsis that play a role in establishment of repression of the embryonic state: PKL (PICKLE), which codes for a putative CHD3 chromatin remodeling factor, and gibberellin (GA), a plant growth regulator. Previous observations have also suggested that PKL mediates some aspects of GA responsiveness in the adult plant. To investigate possible mechanisms by which PKL and GA might act to repress the embryonic state, we further characterized the ability of PKL and GA to repress embryonic traits and reexamined the role of PKL in mediating GA-dependent responses. We found that PKL acts throughout the seedling to repress expression of embryonic traits. Although the ability of pkl seedlings to express embryonic traits is strongly induced by inhibiting GA biosynthesis, it is only marginally responsive to abscisic acid and SPY (SPINDLY), factors that have previously been demonstrated to inhibit GA-dependent responses during germination. We also observed that pkl plants exhibit the phenotypic hallmarks of a mutation in a positive regulator of a GA response pathway including reduced GA responsiveness and increased synthesis of bioactive GAs. These observations indicate that PKL may mediate a subset of GA-dependent responses during shoot development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Arabidopsis/genética , Genes de Plantas , Arabidopsis/efeitos dos fármacos , Sequência de Bases , DNA Helicases , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/biossíntese , Giberelinas/farmacologia , Fenótipo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA