Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroendocrinology ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583420

RESUMO

INTRODUCTION: Progestin, commonly used in oral contraception and preventing preterm birth, elicits various off-target side effects on brain and gastrointestinal (GI) functions, yet the precise mechanisms remain elusive. This study aims to probe progestin's impact on GI function and anxiety-like behaviors in female mice. METHODS: Colon stem cells were utilized to explore the mechanism underlying progestin 17-hydroxyprogesterone caproate (17-OHPC)-mediated suppression of claudin-1 (CLDN1), crucial for epithelial integrity. Chromatin immunoprecipitation and luciferase assays identified potential progestin-response elements on the CLDN1 promoter, with subsequent assessment of oxidative stress and pro-inflammatory cytokine release. Manipulation of vitamin D receptor (VDR) or estrogen receptor ß (ERß) expression elucidated their roles in 17-OHPC-mediated effects. Intestine-specific VDR deficient mice were generated to evaluate 17-OHPC's impact on GI dysfunction and anxiety-like behaviors in female mice. Additionally, gene expression was analyzed in various brain regions, including the amygdala, hypothalamus, and hippocampus. RESULTS: Exposure to 17-OHPC suppressed CLDN1 expression via epigenetic modifications and VDR dissociation from the CLDN1 promoter. Furthermore, 17-OHPC intensified oxidative stress and proinflammatory cytokine release. VDR knockdown partly mimicked, while overexpression of either VDR or ERß partly restored 17-OHPC-mediated effects. Intestinal VDR deficiency partly mirrored 17-OHPC-induced GI dysfunction, with minimal impact on 17-OHPC-mediated anxiety-like behaviors. CONCLUSIONS: 17-OHPC suppresses CLDN1 expression through VDR, contributing to GI dysfunction in female mice, distinct from 17-OHPC-induced anxiety-like behaviors. This study reveals a new mechanism and potential negative impact of progestin exposure on the gastrointestinal tract, alongside inducing anxiety-like behaviors in female mice.

2.
Int Wound J ; 20(4): 1061-1071, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36111540

RESUMO

We performed a meta-analysis to evaluate the effect of minimally invasive surgery and laparotomy on wound infection and postoperative and intraoperative complications in the management of cervical cancer. A systematic literature search up to July 2022 was performed and 10 231 subjects with cervical cancer at the baseline of the studies; 4307 of them were using the minimally invasive surgery, and 5924 were using laparotomy. Odds ratio (OR) with 95% confidence intervals (CIs) were calculated to assess the effect of minimally invasive surgery and laparotomy on wound infection and postoperative and intraoperative complications in the management of cervical cancer using the dichotomous methods with a random or fixed-effect model. The minimally invasive surgery had significantly lower wound infection (OR, 0.20; 95% CI, 0.13-0.30, P < .001), and postoperative complications (OR, 0.48; 95% CI, 0.37-0.64, P < .001) in subjects with cervical cancer compared laparotomy. However, minimally invasive surgery compared with laparotomy in subjects with cervical cancer had no significant difference in intraoperative complications (OR, 1.04; 95% CI, 0.80-1.36, P = 0.76). The minimally invasive surgery had significantly lower wound infection, and postoperative complications however, had no significant difference in intraoperative complications in subjects with cervical cancer compared with laparotomy. The analysis of outcomes should be with caution because of the low sample size of 22 out of 41 studies in the meta-analysis and a low number of studies in certain comparisons.


Assuntos
Neoplasias do Colo do Útero , Infecção dos Ferimentos , Feminino , Humanos , Neoplasias do Colo do Útero/cirurgia , Laparotomia/efeitos adversos , Laparotomia/métodos , Complicações Pós-Operatórias/cirurgia , Complicações Intraoperatórias , Infecção dos Ferimentos/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
3.
BMC Anesthesiol ; 22(1): 273, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042412

RESUMO

OBJECTIVE: To investigate the effect of lidocaine on the expression of voltage-dependent anion channel 1 (VDAC1) in breast invasive carcinoma (BRCA) and its impact on the apoptosis of breast cancer cells. METHODS: We collected clinical data from patients with invasive breast cancer from 2010 to 2020 in the First affiliated hospital of Nanchang University, evaluated the prognostic value of VDAC1 gene expression in breast cancer, and detected the expression of VDAC1 protein in breast cancer tissues and paracancerous tissues by immunohistochemical staining of paraffin sections. Also, we cultured breast cancer cells (MCF-7) to observe the effect of lidocaine on the apoptosis of MCF-7 cells. RESULTS: Analysis of clinical data and gene expression data of BRCA patients showed VDAC1 was a differentially expressed gene in BRCA, VDAC1 may be of great significance for the diagnosis and prognosis of BRCA patients. Administration of lidocaine 3 mM significantly decreased VDAC1 expression, the expression of protein Bcl-2 was significantly decreased (p < 0.05), and the expression of p53 increased significantly (p < 0.05). Lidocaine inhibited the proliferation of MCF-7 breast cancer cells, increased the percentage of G2 / M phase cells and apoptosis. CONCLUSION: Lidocaine may inhibit the activity of breast cancer cells by inhibiting the expression of VDAC1, increasing the apoptosis in breast cancer cells.


Assuntos
Neoplasias da Mama , Canal de Ânion 1 Dependente de Voltagem , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Lidocaína/farmacologia , Mitocôndrias , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Am J Obstet Gynecol ; 224(3): 296.e1-296.e23, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32871131

RESUMO

BACKGROUND: The placenta plays an important role in the modulation of pregnancy immunity; however, there is no consensus regarding the existence of a placental microbiome in healthy full-term pregnancies. OBJECTIVE: This study aimed to investigate the existence and origin of a placental microbiome. STUDY DESIGN: A cross-sectional study comparing samples (3 layers of placental tissue, amniotic fluid, vernix caseosa, and saliva, vaginal, and rectal samples) from 2 groups of full-term births: 50 women not in labor with elective cesarean deliveries and 26 with vaginal deliveries. The comparisons were performed using polymerase chain reaction amplification and DNA sequencing techniques and bacterial culture experiments. RESULTS: There were no significant differences regarding background characteristics between women who delivered by elective cesarean and those who delivered vaginally. Quantitative measurements of bacterial content in all 3 placental layers (quantitative polymerase chain reaction of the 16S ribosomal RNA gene) did not show any significant difference among any of the sample types and the negative controls. Here, 16S ribosomal RNA gene sequencing of the maternal side of the placenta could not differentiate between bacteria in the placental tissue and contamination of the laboratory reagents with bacterial DNA. Probe-specific quantitative polymerase chain reaction for bacterial taxa suspected to be present in the placenta could not detect any statistically significant difference between the 2 groups. In bacterial cultures, substantially more bacteria were observed in the placenta layers from vaginal deliveries than those from cesarean deliveries. In addition, 16S ribosomal RNA gene sequencing of bacterial colonies revealed that most of the bacteria that grew on the plates were genera typically found in human skin; moreover, it revealed that placentas delivered vaginally contained a high prevalence of common vaginal bacteria. Bacterial growth inhibition experiments indicated that placental tissue may facilitate the inhibition of bacterial growth. CONCLUSION: We found no evidence to support the existence of a placental microbiome in our study of 76 term pregnancies, which used polymerase chain reaction amplification and sequencing techniques and bacterial culture experiments. Incidental findings of bacterial species could be due to contamination or to low-grade bacterial presence in some locations; such bacteria do not represent a placental microbiome per se.


Assuntos
Microbiota , Placenta/microbiologia , Adulto , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Nascimento a Termo , Adulto Jovem
5.
BMC Plant Biol ; 20(1): 238, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460695

RESUMO

BACKGROUND: Sheepgrass (Leymus chinensis (Trin.) Tzvel) is a perennial forage grass that can survive extreme freezing winters (- 47.5 °C) in China. In this study, we isolated an unknown function MYB transcription factor gene, LcMYB4, from sheepgrass. However, the function of LcMYB4 and its homologous genes has not been studied in other plants. RESULTS: The expression of the LcMYB4 gene was upregulated in response to cold induction, and the LcMYB4 fusion protein was localized in the nucleus, with transcriptional activation activity. Biological function analysis showed that compared with WT plants, LcMYB4-overexpressing Arabidopsis presented significantly increased chilling and freezing tolerance as evidenced by increased germination rate, survival rate, and seed setting rate under conditions of low temperature stress. Furthermore, LcMYB4-overexpressing plants showed increased soluble sugar content, leaf chlorophyll content and superoxide dismutase activity but decreased malondialdehyde (MDA) under chilling stress. Moreover, the expression of the CBF1, KIN1, KIN2 and RCI2A genes were significantly upregulated in transgenic plants with chilling treatment. These results suggest that LcMYB4 overexpression increased the soluble sugar content and cold-inducible gene expression and alleviated oxidative damage and membrane damage, resulting in enhanced cold resistance in transgenic plants. Interestingly, our results showed that the LcMYB4 protein interacts with fructose-1,6-bisphosphate aldolase protein1 (LcFBA1) and that the expression of the LcFBA1 gene was also upregulated during cold induction in sheepgrass, similar to LcMYB4. CONCLUSION: Our findings suggest that LcMYB4 encodes MYB transcription factor that plays a positive regulatory role in cold stress.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Poaceae/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clonagem Molecular , Resposta ao Choque Frio , Congelamento , Genes de Plantas/fisiologia , Germinação , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Poaceae/metabolismo , Poaceae/fisiologia , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 19(1): 564, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852429

RESUMO

BACKGROUND: Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. RESULTS: In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. CONCLUSIONS: Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poaceae/fisiologia , Fatores de Transcrição/genética , Germinação/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Physiol Plant ; 166(2): 628-645, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30051480

RESUMO

Adverse environmental stresses affect plant growth and crop yields. Sheepgrass (Leymus chinensis (Trin.) Tzvel), an important forage grass that is widely distributed in the east of Eurasia steppe, has high tolerance to extreme low temperature. Many genes that respond to cold stress were identified in sheepgrass by RNA-sequencing, but more detailed studies are needed to dissect the function of those genes. Here, we found that LcFIN2, a sheepgrass freezing-induced protein 2, encoded a chloroplast-targeted protein. Expression of LcFIN2 was upregulated by freezing, chilling, NaCl and abscisic acid (ABA) treatments. Overexpression of LcFIN2 enhanced the survival rate of transgenic Arabidopsis after freezing stress. Importantly, heterologous expression of LcFIN2 in rice exhibited not only higher survival rate but also accumulated various soluble substances and reduced membrane damage in rice under chilling stress. Furthermore, the chlorophyll content, the quantum photochemistry efficiency of photosystem II (ΦPSII), the non-photochemical quenching (NPQ), the net photosynthesis rate (Pn) and the expression of some chloroplast ribosomal-related and photosynthesis-related genes were higher in the transgenic rice under chilling stress. These findings suggested that the LcFIN2 gene could potentially be used to improve low-temperature tolerance in crops.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oryza/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Temperatura
9.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085987

RESUMO

Sheepgrass (Leymus chinensis (Trin.) Tzvel.) is an economically and ecologically important forage in the grass family. Self-incompatibility (SI) limits its seed production due to the low seed-setting rate after self-pollination. However, investigations into the molecular mechanisms of sheepgrass SI are lacking. Therefore, microscopic observation of pollen germination and pollen tube growth, as well as transcriptomic analyses of pistils after self- and cross-pollination, were performed. The results indicated that pollen tube growth was rapidly inhibited from 10 to 30 min after self-pollination and subsequently stopped but preceded normally after cross-pollination. Time course comparative transcriptomics revealed different transcriptome dynamics between self- and cross-pollination. A pool of SI-related signaling genes and pathways was generated, including genes related to calcium (Ca2+) signaling, protein phosphorylation, plant hormone, reactive oxygen species (ROS), nitric oxide (NO), cytoskeleton, and programmed cell death (PCD). A putative SI response molecular model in sheepgrass was presented. The model shows that SI may trigger a comprehensive calcium- and phytohormone-dominated signaling cascade and activate PCD, which may explain the rapid inhibition of self-pollen tube growth as observed by cytological analyses. These results provided new insight into the molecular mechanisms of sheepgrass (grass family) SI.


Assuntos
Perfilação da Expressão Gênica/métodos , Poaceae/genética , Transcriptoma/genética , Cálcio/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização/genética , Polinização/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
BMC Plant Biol ; 18(1): 42, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540194

RESUMO

BACKGROUND: MADS-box genes are categorized into A, B, C, D and E classes and are involved in floral organ identity and flowering. Sheepgrass (Leymus chinensis (Trin.) Tzvel) is an important perennial forage grass and adapts well to many adverse environments. However, there are few studies on the molecular mechanisms of flower development in sheepgrass, especially studies on MADS-domain proteins. RESULTS: In this study, we cloned 11 MADS-box genes from sheepgrass (Leymus chinensis (Trin.) Tzvel), and phylogenetic analysis of the 11 genes with their homologs revealed that they are divided into nine subclades. Tissue-specific expression profile analysis showed that most of these MADS-box genes were highly expressed in floral organs. LcMADS1 and LcMADS3 showed higher expression in the stamen than in the other tissues, and LcMADS7 showed high expression in the stamen, glume, lemma and palea, while expression of LcMADS2, LcMADS9 and LcMADS11 was higher in vegetative organs than floral organs. Furthermore, yeast two-hybrid analyses showed that LcMADS2 interacted with LcMADS7 and LcMADS9. LcMADS3 interacted with LcMADS4, LcMADS7 and LcMADS10, while LcMADS1 could interact with only LcMADS7. Interestingly, the expression of LcMADS1 and LcMADS2 were significantly induced by cold, and LcMADS9 was significantly up-regulated by NaCl. CONCLUSION: Hence, we proposed that LcMADS1, LcMADS2, LcMADS3, LcMADS7 and LcMADS9 play a pivotal role in sheepgrass sexual reproduction and may be involved in abiotic stress responses, and our findings provide useful information for further exploration of the functions of this gene family in rice, wheat and other graminaceous cereals.


Assuntos
Proteínas de Domínio MADS/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Filogenia , Técnicas do Sistema de Duplo-Híbrido
11.
Arch Gynecol Obstet ; 295(2): 337-342, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27928674

RESUMO

PURPOSE: We investigated prospectively cord blood TNF-α and IL-6 levels as diagnostic indicators of brain damage in neonates with non-asphyxia fetal distress. METHODS: Eighty neonates delivered by cesarean section from January 2013 to December 2014 were enrolled. Magnetic resonance imaging was conducted to determine brain damage. Neonates were assigned to a healthy control group (n = 30) or, with fetal distress, apportioned to groups with or without brain damage (n = 20 and 30, respectively). After delivery, the umbilical arterial blood of all neonates was harvested. Serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels were evaluated to investigate a correlation between cord blood TNF-α and IL-6 levels and brain damage caused by non-asphyxia fetal distress. RESULTS: The TNF-α and IL-6 levels in the cord blood of brain-damaged neonates with fetal distress (75.63 ± 7.68 and 217.95 ± 25.15 pg/mL, respectively) were significantly higher than that of neonates with fetal distress without brain damage (43.67 ± 5.54, 119.08 ± 12.30 pg/mL) or the healthy neonates (42.35 ± 6.63, 128.46 ± 16.15 pg/mL); the latter two groups were comparable for both TNF-α and IL-6. The receiver operating characteristic curve showed that when TNF-α (IL-6) reached 53.23 pg/mL (156.23 pg/mL), the specificity and sensitivity for diagnosis of brain damage was 80.3% (82.5%) and 90.1% (81.5%), respectively. CONCLUSION: Monitoring TNF-α and IL-6 levels in umbilical cord blood may assist early diagnosis of brain damage in neonates with non-asphyxia fetal distress.


Assuntos
Lesões Encefálicas/sangue , Sangue Fetal/imunologia , Sofrimento Fetal/sangue , Interleucina-6/sangue , Fator de Necrose Tumoral alfa/sangue , Encéfalo/patologia , Lesões Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Sangue Fetal/metabolismo , Sofrimento Fetal/patologia , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos
12.
Plant Biotechnol J ; 14(3): 861-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26234381

RESUMO

As a perennial forage crop broadly distributed in eastern Eurasia, sheepgrass (Leymus chinensis (Trin.) Tzvel) is highly tolerant to low-temperature stress. Previous report indicates that sheepgrass is able to endure as low as -47.5 °C,allowing it to survive through the cold winter season. However, due to the lack of sufficient studies, the underlying mechanism towards the extraordinary low-temperature tolerance is unclear. Although the transcription profiling has provided insight into the transcriptome response to cold stress, more detailed studies are required to dissect the molecular mechanism regarding the excellent abiotic stress tolerance. In this work, we report a novel transcript factor LcFIN1 (L. chinensis freezing-induced 1) from sheepgrass. LcFIN1 showed no homology with other known genes and was rapidly and highly induced by cold stress, suggesting that LcFIN1 participates in the early response to cold stress. Consistently, ectopic expression of LcFIN1 significantly increased cold stress tolerance in the transgenic plants, as indicated by the higher survival rate, fresh weight and other stress-related indexes after a freezing treatment. Transcriptome analysis showed that numerous stress-related genes were differentially expressed in LcFIN1-overexpressing plants, suggesting that LcFIN1 may enhance plant abiotic stress tolerance by transcriptional regulation. Electrophoretic mobility shift assays and CHIP-qPCR showed that LcCBF1 can bind to the CRT/DRE cis-element located in the promoter region of LcFIN1, suggesting that LcFIN1 is directly regulated by LcCBF1. Taken together, our results suggest that LcFIN1 positively regulates plant adaptation response to cold stress and is a promising candidate gene to improve crop cold tolerance.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Temperatura Baixa , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Sequestradores de Radicais Livres/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Fenótipo , Filogenia , Epiderme Vegetal/citologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poaceae/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Nicotiana/citologia , Ativação Transcricional/genética
13.
BMC Genomics ; 15: 1126, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25516098

RESUMO

BACKGROUND: Sheepgrass (Leymus chinensis) is an important perennial forage grass across the Eurasian Steppe and is adaptable to various environmental conditions, but little is known about its molecular mechanism responding to grazing and BSA deposition. Because it has a large genome, RNA sequencing is expensive and impractical except for the next-generation sequencing (NGS) technology. RESULTS: In this study, NGS technology was employed to characterize de novo the transcriptome of sheepgrass after defoliation and grazing treatments and to identify differentially expressed genes (DEGs) responding to grazing and BSA deposition. We assembled more than 47 M high-quality reads into 120,426 contigs from seven sequenced libraries. Based on the assembled transcriptome, we detected 2,002 DEGs responding to BSA deposition during grazing. Enrichment analysis of Gene ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the effects of grazing and BSA deposition involved more apoptosis and cell oxidative changes compared to defoliation. Analysis of DNA fragments, cell oxidative factors and the lengths of leaf scars after grazing provided physiological and morphological evidence that BSA deposition during grazing alters the oxidative and apoptotic status of cells. CONCLUSIONS: This research greatly enriches sheepgrass transcriptome resources and grazing-stress-related genes, helping us to better understand the molecular mechanism of grazing in sheepgrass. The grazing-stress-related genes and pathways will be a valuable resource for further gene-phenotype studies.


Assuntos
Herbivoria , Poaceae/efeitos dos fármacos , Poaceae/genética , Saliva/química , Análise de Sequência de RNA , Soroalbumina Bovina/farmacologia , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Poaceae/citologia , Poaceae/metabolismo
14.
BMC Genomics ; 15: 399, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24886329

RESUMO

BACKGROUND: Many Poaceae species show a gametophytic self-incompatibility (GSI) system, which is controlled by at least two independent and multiallelic loci, S and Z. Until currently, the gene products for S and Z were unknown. Grass SI plant stigmas discriminate between pollen grains that land on its surface and support compatible pollen tube growth and penetration into the stigma, whereas recognizing incompatible pollen and thus inhibiting pollination behaviors. Leymus chinensis (Trin.) Tzvel. (sheepgrass) is a Poaceae SI species. A comprehensive analysis of sheepgrass stigma transcriptome may provide valuable information for understanding the mechanism of pollen-stigma interactions and grass SI. RESULTS: The transcript abundance profiles of mature stigmas, mature ovaries and leaves were examined using high-throughput next generation sequencing technology. A comparative transcriptomic analysis of these tissues identified 1,025 specifically or preferentially expressed genes in sheepgrass stigmas. These genes contained a significant proportion of genes predicted to function in cell-cell communication and signal transduction. We identified 111 putative transcription factors (TFs) genes and the most abundant groups were MYB, C2H2, C3H, FAR1, MADS. Comparative analysis of the sheepgrass, rice and Arabidopsis stigma-specific or preferential datasets showed broad similarities and some differences in the proportion of genes in the Gene Ontology (GO) functional categories. Potential SI candidate genes identified in other grasses were also detected in the sheepgrass stigma-specific or preferential dataset. Quantitative real-time PCR experiments validated the expression pattern of stigma preferential genes including homologous grass SI candidate genes. CONCLUSIONS: This study represents the first large-scale investigation of gene expression in the stigmas of an SI grass species. We uncovered many notable genes that are potentially involved in pollen-stigma interactions and SI mechanisms, including genes encoding receptor-like protein kinases (RLK), CBL (calcineurin B-like proteins) interacting protein kinases, calcium-dependent protein kinase, expansins, pectinesterase, peroxidases and various transcription factors. The availability of a pool of stigma-specific or preferential genes for L. chinensis offers an opportunity to elucidate the mechanisms of SI in Poaceae.


Assuntos
Genes de Plantas , Poaceae/genética , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Comunicação Celular/genética , Mapeamento de Sequências Contíguas , Flores/genética , Flores/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Pólen/genética , Pólen/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Cell Rep ; 33(9): 1507-18, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913125

RESUMO

KEY MESSAGE: The expression of LcWRKY5 was induced significantly by salinity, mannitol and cutting treatments. Arabidopsis- overexpressing LcWRKY5 greatly increased dehydration tolerance by regulating the expression of multiple stress-responsive genes. Based on the data of sheepgrass 454 high-throughout sequencing and expression analysis results, a drought-induced gene LcWRKY5 was isolated and cloned, and the biological role of the gene has not been reported until now. Bioinformatics analysis showed that LcWRKY5 contains one conserved WD domain and belongs to the group II WRKY protein family. LcWRKY5 shows high sequence identity with predicted or putative protein products of Hordeum vulgare, Aegilops tauschii, Triticum aestivum, Brachypodium distachyon, Oryza sativa, but it has low homology with WRKYs from dicotyledonous plants. Several drought-inducibility, fungal elicitor, MeJA-responsiveness, endosperm, light, anoxic specific inducibility, and circadian control elements were found in the promoter region of LcWRKY5. Tissue-specific expression patterns showed that LcWRKY5 is expressed in roots and leaves, without expression in other tissues. The expression of LcWRKY5 was induced significantly under salinity and mannitol stresses but was not notably changed under cold and Abscisic acid stress. The LcWRKY5 protein exhibits transcription activation activity in the yeast one-hybrid system. Overexpressing LcWRKY5 exhibited increased rates of cotyledon greening and plant survival in transgenic Arabidopsis compared with wild-type plants under drought stress, and the expression levels of DREB2A and RD29A in transgenic plants were enhanced under drought stress. These results indicated that LcWRKY5 may play an important role in drought-response networks through regulation of the DREB2A pathway. LcWRKY5 can be a candidate gene for engineering drought tolerance in other crops.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Secas , Dados de Sequência Molecular , Estrutura Molecular , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Plântula/genética , Plântula/fisiologia , Alinhamento de Sequência , Ativação Transcricional
17.
Gut Microbes ; 16(1): 2356275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797999

RESUMO

Multidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.


Assuntos
Antibacterianos , Bactérias , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Simbiose , Metaboloma , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla , Salmonella/efeitos dos fármacos , Salmonella/metabolismo , Salmonella/genética , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia
18.
Plant Cell Physiol ; 54(7): 1172-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23695503

RESUMO

Previously, we identified >1,500 genes that were induced by high salt stress in sheepgrass (Leymus chinensis, Gramineae: Triticeae) when comparing the changes in their transcription levels in response to high salt stress by next-generation sequencing. Among the identified genes, a gene of unknown function (designated as Leymus chinensis salt-induced 1, LcSAIN1) showed a high sequence identity to its homologs from wheat, Hordeum vulgare and Oryza sativa, but LcSAIN1 and its homologs produce hypothetical proteins with no conserved functional domains. Transcription of the LcSAIN1 gene was up-regulated by various stresses. The overexpression of LcSAIN1 in Arabidopsis and rice increased the greening rate of cotyledons, the fresh weight, root elongation, plant height and the plant survival rate when compared with control plants and conferred a tolerance against salt stress. Subcellular localization analysis indicated that LcSAIN1 is localized predominantly in the nucleus. Our results show that the LcSAIN1 gene might play an important positive modulation role in increasing the expression of transcription factors (MYB2 and DREB2A) and functional genes (P5CS and RAB18) in transgenic plants under salt stress and that it augments stress tolerance through the accumulation of compatible solutes (proline and soluble sugar) and the alleviation of changes in reactive oxygen species. The LcSAIN1 gene could be a potential resource for engineering salinity tolerance in important crop species.


Assuntos
Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/genética , Poaceae/genética , Tolerância ao Sal/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Clonagem Molecular , Cotilédone/genética , Cotilédone/fisiologia , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Poaceae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/fisiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Minerva Anestesiol ; 89(3): 149-156, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326770

RESUMO

BACKGROUND: Postoperative ileus (POI) is thought to result from a disrupted sympathetic/parasympathetic balance caused by trauma or surgery. Transcutaneous auricular vagus nerve stimulation (tVNS) is a non-invasive technique involving stimulation of the vagal auricular branch, leading to autonomic regulation and reduced inflammation. Here, the effects of low-intensity transcutaneous auricular vagal stimulation on POI after laparoscopic radical resection of colorectal cancer were investigated. METHODS: One hundred and thirty-four patients who received scheduled laparoscopic radical resection of colorectal cancer were randomly allocated to the A and B groups. The A group received low-intensity (25 Hz, 50 mA) transcutaneous electrical stimulation of the right auricular branch for 20 minutes prior to anesthesia while the B group did not. The primary outcome was the incidence of POI. RESULTS: The incidence of POI in the A group was 6.25% and 20% in the B group (P=0.022). Patients in the A group showed more regular bowel sounds after 24, 36, and 48 h than those in the B group (P<0.001). CONCLUSIONS: Low-intensity transcutaneous auricular vagal stimulation reduced POI after laparoscopic radical resection of colorectal cancer.


Assuntos
Neoplasias Colorretais , Íleus , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Complicações Pós-Operatórias/prevenção & controle , Íleus/prevenção & controle , Neoplasias Colorretais/cirurgia
20.
Front Pharmacol ; 14: 1136003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324498

RESUMO

Background and Purpose: The prevalence of elderly patients prompts anesthesiologists to determine the optimal dose of medication due to the altered pharmacokinetics and pharmacodynamics of this population. The present study aimed to determine the 95% effective dose (ED95) of remimazolam tosylate in anesthesia induction to inhibit endotracheal intubation-related cardiovascular reaction in frail and non-frail senile patients. Methods: A prospective sequential allocation dose-finding study of remimazolam tosylate was conducted on 80 elderly patients who received general anesthesia between May and June 2022 at the First Affiliated Hospital of Nanchang University. The initial dose was 0.3 mg/kg. The blood pressure and heart rate fluctuations during intubation were either <20% (negative cardiovascular response) or ≥20% (positive cardiovascular response). If positive, the dose of the next patient was increased by 0.02 mg/kg, while if negative, it was reduced by 0.02 mg/kg according to the 95:5 biased coin design (BCD). The ED95 and 95% confidence intervals (CIs) were determined using R-Foundation isotonic regression and bootstrapping methods. Results: The ED95 of remimazolam tosylate to inhibit the response during tracheal intubation was 0.297 mg/kg (95% CI: 0.231-0.451 mg/kg) and 0.331 mg/kg (95% CI: 0.272-0.472 mg/kg) in frail and non-frail senile patients, respectively. Conculation and Implications: The CI of the two groups overlap, and no difference was detected in the ED95 of remimazolam tosylate in inhibiting endotracheal intubation-related cardiovascular response in frail and non-frail senile patients. These results suggested that remimazolam tosylate is an optimal anesthesia inducer for all elderly patients. Clinical Trial Registration: https://www.chictr.org.cn, identifier ChiCTR2200055709.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA