Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(5): 055201, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33059334

RESUMO

In-plane anisotropic two-dimensional (2D) materials have gained considerable interest in the field of research, due to having the potential of being used in different device applications. Recently, among these 2D materials, group 10 transition metal dichalcogenides (TMDs) pentagonal Palladium diselenide (PdSe2) is utilized in various sections of researches like nanoelectronics, thermoelectric, spintronics, optoelectronics, and ultrafast photonics, owing to its high air stability and broad absorption spectrum properties. In this paper, it is demonstrated that by utilizing this novel 2D layered PdSe2 material as a saturable absorber (SA) in an EDF laser system, it is possible to obtain switchable laser pulse generation modes. At first, the Q-switching operation mode is attained at a threshold pump power of 56.8 mW at 1564 nm, where the modulation range of pulse duration and repetition rate is 18.5 µs-2.0 µs and 16.4 kHz-57.0 kHz, respectively. Afterward, the laser pulse generation mode is switched to the mode-locked state at a pump power of 63.1 mW (threshold value) by changing the polarization condition inside the laser cavity, and this phenomenon persists until the maximum pump power of 230.4 mW. For this mode-locking operation, the achieved pulse duration is 766 fs, corresponding to the central wavelength and 3 dB bandwidth of 1566 nm and 4.16 nm, respectively. Finally, it is illustrated that PdSe2 exhibits a modulation depth of 7.01%, which substantiates the high nonlinearity of the material. To the best of the authors' knowledge, this is the first time of switchable modes for laser pulse generation are achieved by using this PdSe2 SA. Therefore, this work will encourage the research community to carry out further studies with this PdSe2 material in the future.

2.
Opt Express ; 26(10): 13055-13060, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801338

RESUMO

Numerous studies have been conducted to explore the performance of two-dimensional (2D) layered nano-materials based saturable absorber (SA) for pulsed laser applications. However, fabricating materials in nanoscale requires complicated preparation processes, high energy consumption, and high expertise. Hence, the study of pulsed laser performance based on the saturable absorber prepared by layered materials with bulk-micro size have gained a great attention. Platinum disulfide (PtS2), which is newly developed group 10 2D layered materials, offers great potential for the laser photonic applications owing to its high carrier mobility, broadly tunable natural bandgap energy, and stability. In this work, the first passively Q-switched Erbium (Er) doped fiber laser is demonstrated with an operational wavelength of 1568.8 nm by using PtS2 microflakes saturable absorber, fabricated by a simple liquid exfoliation in N-Methyl-2-pyrrolidone (NMP) and then incorporated into polyvinyl alcohol (PVA) polymer thin film. A stable Q-switched laser operation is achieved by using this PtS2-SA within a fiber laser ring cavity. The maximum average output power is obtained as 1.1 mW, corresponding to the repetition rate of 24.6 kHz, the pulse duration of 4.2 µs, and single pulse energy of 45.6 nJ. These results open up new applications of this novel PtS2 layered material.

3.
ACS Appl Mater Interfaces ; 14(6): 7936-7948, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119819

RESUMO

With the advancement of civilization, water purification, as well as management and disposal of ever-increasing municipal solid waste (MSW), and e-waste, have become global concerns. To address these issues in a sustainable way, a 3D solar evaporator has been proposed in this paper by repurposing recycled paper from MSW in the form of egg trays and waste dry toner (e-waste) using a facile fabrication method. The unique 3D porous structure, fibrous surface, superior water absorbing capability as well as low thermal conductivity of wastepaper-derived egg trays make them an excellent candidate for an efficient solar evaporator, while the waste toner powder coating significantly enhances the optical absorbance capacity. Under 1 sun illumination, the proposed solar evaporator demonstrates an excellent evaporation rate and efficiency of 1.3 kg/m2 h and 78.5%, respectively. Moreover, the competitive advantage of the 3D structure in collecting solar irradiance at various light incident angles in comparison to a 2D structure, excellent cycle stability, low processing temperature, and the use of low-cost waste materials enable its use for large-scale water purification systems.

4.
ACS Nano ; 16(8): 12390-12402, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35876327

RESUMO

The nonlinear optical (NLO) properties of two-dimensional (2D) materials are fascinating for fundamental physics and optoelectronic device development. However, relatively few investigations have been conducted to establish the combined NLO activities of a 2D material. Herein, a study of numerous NLO properties of 2D gallium sulfide (GaS), including second-harmonic generation (SHG), two-photon excited fluorescence (TPEF), and NLO absorption are presented. The layer-dependent SHG response of 2D GaS identifies the noncentrosymmetric nature of the odd layers, and the second-order susceptibility (χ2) value of 47.98 pm/V (three-layers of GaS) indicates the superior efficiency of the SHG signal. In addition, structural deformation induces the symmetry breaking and facilitates the SHG in the bulk samples, whereas a possible efficient symmetry breaking in the liquid-phase exfoliated samples results in an enhancement of the SHG signal, providing prospective fields of investigation for researchers. The generation of TPEF from 800 to 860 nm depicts the two-photon absorption characteristics of 2D GaS material. Moreover, the saturable absorption characteristics of 2D GaS are realized from the largest nonlinear absorption coefficient (ß) of -9.3 × 103, -91.0 × 103, and -6.05 × 103 cm/GW and giant modulation depths (Ts) of 24.4%, 35.3%, and 29.1% at three different wavelengths of 800, 1066, and 1560 nm, respectively. Hence, such NLO activities indicate that 2D GaS material can facilitate in the technical advancements of future nonlinear optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 13(51): 61518-61527, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34793123

RESUMO

Two-dimensional (2D) gallium sulfide (GaS) offers a plethora of exceptional electrical and optical properties, allowing it to be used in a wide range of applications, including photodetectors, hydrogen generation, and nonlinear optical devices. In this paper, ultrathin 2D GaS nanosheets are synthesized using the liquid-phase exfoliation method, and the structure, morphology, and chemical composition of the as-prepared nanosheets are extensively investigated. After depositing 2D GaS nanosheets on side polished fibers, successful saturable absorbers (SAs) are fabricated for the first time. The realized modulation depths are 10 and 5.3% at 1 and 1.5 µm, respectively, indicating the wideband saturable absorption performance of the prepared SAs. By integrating GaS-SAs into three different wavelength-based fiber laser cavities, stable mode-locked pulses are achieved, having pulse durations of 46.22 ps (1 µm), 614 fs (1.5 µm), and 1.02 ps (2 µm), respectively. Additionally, different orders of harmonic mode-locked pulses with the highest repetition rate of 0.55 GHz (45th order) and Q-switched pulses with the shortest pulse duration of 2.2 µs are obtained in the telecommunication waveband. These findings suggest that 2D GaS has a lot of potential for broadband ultrafast photonics in nonlinear photonics devices.

6.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291350

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) materials have exceptional optoelectronic and structural properties, which allow them to be utilized in several significant applications in energy, catalyst, and high-performance optoelectronic devices. Among other properties, the nonlinear optical properties are gaining much attention in the research field. In this work, a unique pentagonal TMD material, palladium disulfide (PdS2), is employed as a saturable absorber (SA) in an ytterbium-doped fiber (YDF) laser cavity and mode-locked laser pulse is generated. At first, liquid phase exfoliation is performed to prepare PdS2 nanoflakes. Afterward, the PdS2-nanoflakes solution was incorporated in the side-polished fiber (SPF) to form SPF-based PdS2-SA. By utilizing this SA, a highly stable mode-locked laser pulse is realized at pump power of 160 mW, which has a center wavelength of 1033 nm and a 3-dB spectral bandwidth of 3.7 nm. Moreover, the pulse duration, maximum power output and corresponding single-pulse energy were determined as 375 ps, 15.7 mW and 0.64 nJ, respectively. During the experiment, the mode-locked pulse remained stable till the pump power reached a value of 400 mW and, for the regulation of power, the slope efficiency is calculated at about 4.99%. These results indicate that PdS2 material is a promising nonlinear optical material for ultrafast optical applications in the near-infrared (NIR) region.

7.
RSC Adv ; 9(65): 38077-38084, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541785

RESUMO

Group-10 transition metal dichalcogenide (TMD) materials have recently attracted considerable attention in optoelectronics applications. However, so far their quantum dot (QD) counterparts with photoluminescence (PL) nature still remain to be revealed. In this study, 2 typical types of group-10 TMD material (PdS2 and PdSe2) QDs are fabricated via liquid exfoliation using N-methyl-2-pyrrolidone (NMP) solvent. The absorption and PL spectra of these QD solutions are studied, exhibiting excitation wavelength-dependent behaviors and large Stokes shifts. Furthermore, the quantum yield and decay lifetime are also investigated and analyzed. The obtained results suggest promising optoelectronic applications with group-10 TMD QDs in the future.

8.
Sci Rep ; 9(1): 10106, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300706

RESUMO

Two-dimensional (2D) layered Platinum Ditelluride (PtTe2), a novel candidate of group 10 transition-metal dichalcogenides (TMDs), which provides enormous potential for pulsed laser applications due to its highly stable and strong nonlinear optical absorption (NOA) properties. PtTe2 saturable absorber (SA) is successfully fabricated with firstly demonstrated the passively Q-switched laser operation within a Yb-doped fiber laser cavity at 1066 nm. Few layered PtTe2 is produced by uncomplicated and cost-efficient ultrasonic liquid exfoliation and follow by incorporating into polyvinyl alcohol (PVA) polymer to form a PtTe2-PVA composite thin film saturable absorber. The highest achieved single pulse energy is 74.0 nJ corresponding to pulse duration, repetition rate and average output power of 5.2 µs, 33.5 kHz and 2.48 mW, respectively. This work has further exploited the immeasurable utilization potential of the air stable and broadband group 10 TMDs for ultrafast photonic applications.

9.
ACS Appl Mater Interfaces ; 10(4): 3986-3993, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29303248

RESUMO

Flexible and sensitive sensors that can detect external stimuli such as pressure, temperature, and strain are essential components for applications in health diagnosis and artificial intelligence. Multifunctional sensors with the capabilities of sensing pressure and temperature simultaneously are highly desirable for health monitoring. Here, we have successfully fabricated a flexible and simply structured bimodal sensor based on metal-organic frameworks (MOFs) derived porous carbon (PC) and polydimethylsiloxane (PDMS) composite. Attributed to the porous structure of PC/PDMS composite, the fabricated sensor exhibits high sensitivity (15.63 kPa-1), fast response time (<65 ms), and high durability (∼2000 cycles) for pressure sensing. Additionally, its application in detecting human motions such as subtle wrist pulses in real time has been demonstrated. Furthermore, the as-prepared device based on the PC/PDMS composite exhibits a good sensitivity (>0.11 °C-1) and fast response time (∼100 ms), indicating its potential application in sensing temperature. All of these capabilities indicate its great potential in the applications of health monitoring and artificial skin for artificial intelligence system.


Assuntos
Carbono/química , Humanos , Estruturas Metalorgânicas , Porosidade , Pressão , Temperatura
10.
Sci Rep ; 7(1): 3125, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600560

RESUMO

Methods and mechanisms for improvement of photocatalytic activity, are important and popular research topics for renewable energy production and waste water treatment. Here, we demonstrate a facile laser drilling method for engineering well-aligned pore arrays on magnetron-sputtered WS2 nanofilms with increased active edge sites; the proposed method promotes partial oxidation to fabricate WS2/WO3 heterojunctions that enhance the separation of photogenerated electron-hole pairs. The WS2 film after one, two, and three treatments exhibited photocurrent density of 3.9, 6.2, and 8 µA/cm2, respectively, reaching up to 31 times larger than that of pristine WS2 film along with greatly improved charge recombination kinetics. The unprecedented combinational roles of laser drilling revealed in this study in regards to geometric tailoring, chemical transformation, and heterojunction positioning for WS2-based composite nanomaterials create a foundation for further enhancing the performance of other 2D transition metal dichalcogenides in photocatalysis via laser treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA