Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(35): 24515-24525, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39079011

RESUMO

Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.

2.
J Am Chem Soc ; 146(15): 10857-10867, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587540

RESUMO

The asymmetric cross-coupling of unsaturated bonds, hampered by their comparable polarity and reactivity, as well as the scarcity of efficient catalytic systems capable of diastereo- and enantiocontrol, presents a significant hurdle in organic synthesis. In this study, we introduce a highly adaptable photochemical cobalt catalysis framework that facilitates chemo- and stereoselective reductive cross-couplings between common aldehydes with a broad array of carbonyl and iminyl compounds, including N-acylhydrazones, aryl ketones, aldehydes, and α-keto esters. Our methodology hinges on a synergistic mechanism driven by photoredox-induced single-electron reduction and subsequent radical-radical coupling, all precisely guided by a chiral cobalt catalyst. Various optically enriched ß-amino alcohols and unsymmetrical 1,2-diol derivatives (80 examples) have been synthesized with good yields (up to 90% yield) and high stereoselectivities (up to >20:1 dr, 99% ee). Of particular note, this approach accomplishes unattainable photochemical asymmetric transformations of aldehydes with disparate carbonyl partners without reliance on any external photosensitizer, thereby further emphasizing its versatility and cost-efficiency.

3.
Chemistry ; 29(17): e202203404, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36545842

RESUMO

Direct and selective C-H methylation is a powerful tool with which to install methyl groups into organic molecules, and is particularly useful in pharmaceutical chemistry. However, practical methods for such modification of biologically interesting targets have been rarely developed. We here report an iron-catalyzed C(sp3 )-H methylation reaction of glycine derivatives, peptides and drug-like molecules in an alcohol in the presence of di-tert-butyl peroxide. A readily available iron catalyst plays multiple roles in the transformation, which accelerates oxidation of C-N bonds to C=N double bonds, activates imine intermediates as Lewis acids by bidentate chelation, and at the same time facilitates cleavage of the peroxide to generate methyl radicals. A variety of methylated N-aryl glycine derivatives and peptides were obtained in good yield and with excellent chemo- and site-selectivity. This reaction is scalable, easily managed, and can be completed within 1-2 h. It features an economic, bio-friendly catalyst, a green solvent and low toxic reagents, and will provide effective access to precise C-H modification of biomolecules and natural products.


Assuntos
Glicina , Ferro , Metilação , Ferro/química , Catálise , Peptídeos
4.
J Org Chem ; 84(4): 2297-2306, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30632746

RESUMO

A palladium-catalyzed ring-opening oxo-formal [3 + 2]-cycloaddition reaction of novel donor-acceptor spirovinylcyclopropyl oxindole with 3-oxindole is described. The developed protocol provides facile access to oxo-bispirooxindole derivatives in good yields (up to 82% yield) with excellent diastereoselectivities (up to 20:1 dr).

5.
Org Biomol Chem ; 17(1): 103-107, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30520921

RESUMO

A novel palladium-catalysed ring-opening [3 + 2]-annulation of spirovinylcyclopropyl oxindole with α,ß-unsaturated nitroalkenes is reported. A series of spirooxindole derivatives were synthesized in high yields and good to excellent diastereoselectivities. This developed protocol offers a new and efficient pathway for the assembly of spirooxindoles.

6.
Chem Commun (Camb) ; 59(62): 9513-9516, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455614

RESUMO

We have developed an effective photochemical method for site-selective (hetero)arylation of polychlorinated heteroarenes. This approach eliminates the need for transition metal catalysts and photosensitizers by relying on in situ formation of unconventional electron donor-acceptor (EDA) complexes between two substrates and a basic additive. Our protocol yields chlorine-containing biaryl heterocyclic compounds with high levels of site-selectivity, which are of significant importance in both synthetic and medicinal chemistry.

7.
Chem Asian J ; 16(17): 2435-2438, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337866

RESUMO

The unexpected gold-catalyzed formal [3+2]-cycloaddition of N-2,2,2-trifluoroethylisatin ketimines with 2-(1-Alkynyl)-2-alken-1-ones is reported. Both diastereomers of the corresponding cycloadducts were formed in moderate to excellent yields with excellent diastereoselectivities by switching the catalytic system from mono-gold to gold/silver bimetallic catalytic system. The practicality of this protocol is demonstrated by scale-up reaction and the transformations of the cycloadduct.

8.
Chem Commun (Camb) ; 57(36): 4456-4459, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949393

RESUMO

An enantioselective ring-opening formal [3+2]-cycloaddition of spirovinylcyclopropyl oxindoles with enals via synergistic catalysis of palladium(0) and a chiral organocatalyst has been developed, affording spirooxindoles bearing four contiguous stereocenters in good yields with excellent enantioselectivities. The generality and utility of the protocol were also demonstrated through scale-up experiments and synthetic transformation of the resulting cycloadduct.

9.
Drug Des Devel Ther ; 13: 1221-1231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114162

RESUMO

Purpose: Aloin (ALO), a bioactive ingredient extracted from aloe vera, has anti-tumor effects. High Mobility Group Box 1 (HMGB1), a highly conserved nuclear DNA-binding protein, has been implicated in various cancer types. Highly expressed HMGB1 is closely associated with tumor cells apoptosis, proliferation and migration. We investigated the specific molecular mechanisms by which ALO-induced apoptosis by targeting HMGB1 in gastric cancer cells. Materials and methods: Human gastric cancer HGC-27 cells were treated with different doses of ALO (100, 200 and 400 µg/ml) for 24 h, after which DAPI staining was used to observe the nuclear morphology, Annexin V/PI double staining assay was used to determine the rate of apoptosis; Western blotting was used to detect the levels of PARP, pro-caspase3, HMGB1 and RAGE; nuclear translocation of HMGB1 was determined by conducting a nucleoplasm separation experiment. The Enzyme linked immunosorbent assay (ELISA) assay was used to detect release of HMGB1. The HGC-27 cells, transfected with HMGB1 shRNA plasmids, were stimulated with ALO for 24 h, after which a flow cytometry assay was used to detect the rate of apoptosis. HGC-27 cells were pre-treated with or without ALO and then stimulated with rhHMGB1, the phosphorylation of Akt, mTOR, P70S6K, S6, 4EBP1, ERK, P90RSK, cAMP regulatory element binding (CREB) were detected by Western blotting. Results: After different doses of ALO treatment, the nuclei showed morphological changes characteristic of apoptosis. Apoptotic rates were enhanced in a dose dependent manner. The level of cleaved PARP was enhanced and pro-caspase3, HMGB1 and RAGE levels were reduced, HMGB1 nuclear translocation and release were inhibited. The activation of rhHMGB1-induced Akt-mTOR-P70S6K and ERK-CREB signalling pathways was inhibited by ALO. Blocking these signalling pathways by special inhibitors and HMGB1 knockdown could enhance ALO-induced HGC-27 cell apoptosis. Conclusion: ALO- induced HGC-27 cell apoptosis by down-regulating expressions of HMGB1 and RAGE, inhibiting HMGB1 release and then suppressing rhHMGB1-induced activation of Akt-mTOR-P70S6K and ERK-P90RSK-CREB signalling pathways.


Assuntos
Apoptose/efeitos dos fármacos , Emodina/análogos & derivados , Proteína HMGB1/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Aloe/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Emodina/química , Emodina/farmacologia , Proteína HMGB1/metabolismo , Humanos , Estrutura Molecular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA