RESUMO
TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
RESUMO
Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.
Assuntos
Canais de Potencial de Receptor Transitório , Microscopia Crioeletrônica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.
Assuntos
Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Regulação Alostérica , Permeabilidade da Membrana Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Diterpenos/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Lipídeos/química , Meglumina/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Prótons , Canais de Cátion TRPV/agonistasRESUMO
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.
Assuntos
Anticorpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Células CHO , COVID-19/patologia , COVID-19/virologia , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Células Gigantes/citologia , Humanos , Fusão de Membrana , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Integrin αvß8 binds with exquisite specificity to latent transforming growth factor-ß (L-TGF-ß). This binding is essential for activating L-TGF-ß presented by a variety of cell types. Inhibiting αvß8-mediated TGF-ß activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvß8 ectodomain and its intact natural ligand, L-TGF-ß, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvß8 binding specificity and TGF-ß activation. Our studies reveal a mechanism of TGF-ß activation where mature TGF-ß signals within the confines of L-TGF-ß and the release and diffusion of TGF-ß are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvß8-mediated L-TGF-ß activation.
Assuntos
Microscopia Crioeletrônica/métodos , Integrinas/química , Integrinas/metabolismo , Proteínas de Ligação a TGF-beta Latente/química , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Anticorpos/imunologia , Sítios de Ligação , Brônquios/citologia , Células CHO , Cricetulus , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Integrinas/imunologia , Ativação Linfocitária , Masculino , Vison , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Linfócitos T Reguladores/imunologiaRESUMO
Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.
Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de SinaisRESUMO
The Royal Swedish Academy of Sciences awarded the 2017 Nobel Prize for Chemistry to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryoelectron microscopy for the high-resolution structure determination of biomolecules in solution." Achieving this goal, which required innovation, persistence, and uncommon physical insight, has broadened horizons for structural studies in molecular and cell biology.
Assuntos
Química/história , Microscopia Crioeletrônica , Prêmio Nobel , História do Século XX , História do Século XXI , Proteínas/químicaRESUMO
Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level.
Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Conformação Molecular , Processamento de Imagem Assistida por Computador , Funções Verossimilhança , SoftwareRESUMO
Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.
Assuntos
Microscopia Crioeletrônica/métodos , Conformação Molecular , Proteínas/ultraestrutura , Algoritmos , Microscopia Crioeletrônica/instrumentação , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Proteínas/química , Proteínas/isolamento & purificaçãoRESUMO
Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.
Assuntos
Actinobacteria/enzimologia , Sistemas de Secreção Bacterianos , Actinobacteria/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/químicaRESUMO
Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.
Assuntos
Implantes Absorvíveis , Encéfalo , Hidrogéis , Monitorização Fisiológica , Ondas Ultrassônicas , Tecnologia sem Fio , Animais , Masculino , Ratos , Encéfalo/fisiologia , Hidrogéis/química , Concentração de Íons de Hidrogênio , Injeções/instrumentação , Pressão Intracraniana , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Ratos Sprague-Dawley , Porco Miniatura , Temperatura , Fatores de Tempo , Tecnologia sem Fio/instrumentaçãoRESUMO
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Assuntos
Trifosfato de Adenosina/análogos & derivados , Dineínas/química , Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Catálise , Cristalografia por Raios X , Dictyostelium/química , Dineínas/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestruturaRESUMO
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Assuntos
Desaminase APOBEC-3G , HIV-1 , Proteólise , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Animais , Humanos , Desaminase APOBEC-3G/antagonistas & inibidores , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/metabolismo , Desaminase APOBEC-3G/ultraestrutura , HIV-1/metabolismo , HIV-1/patogenicidade , RNA/química , RNA/metabolismo , Ubiquitina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do Genoma Viral , Primatas/virologiaRESUMO
Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.
Assuntos
Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatogênese , Testículo/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Quebras de DNA de Cadeia Dupla , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de SequênciaRESUMO
Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.
Assuntos
Microscopia Crioeletrônica , Imunoglobulinas Estimuladoras da Glândula Tireoide , Receptores da Tireotropina , Tireotropina , Membrana Celular/metabolismo , Doença de Graves/imunologia , Doença de Graves/metabolismo , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/química , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/farmacologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/ultraestrutura , Fosfolipídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/química , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/ultraestrutura , Rotação , Tireotropina/química , Tireotropina/metabolismo , Tireotropina/farmacologiaRESUMO
RNA structural switches are key regulators of gene expression in bacteria, but their characterization in Metazoa remains limited. Here, we present SwitchSeeker, a comprehensive computational and experimental approach for systematic identification of functional RNA structural switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA switches. To validate our approach, we characterized a previously unknown RNA switch in the 3' untranslated region of the RORC (RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with cryogenic electron microscopy, confirmed its existence as two alternative structural conformations. Furthermore, we used genome-scale CRISPR screens to identify trans factors that regulate gene expression through this RNA structural switch. We found that nonsense-mediated messenger RNA decay acts on this element in a conformation-specific manner. SwitchSeeker provides an unbiased, experimentally driven method for discovering RNA structural switches that shape the eukaryotic gene expression landscape.
Assuntos
Conformação de Ácido Nucleico , Transcriptoma , Humanos , Regiões 3' não Traduzidas , RNA/genética , RNA/química , Ésteres do Ácido Sulfúrico/química , Degradação do RNAm Mediada por Códon sem Sentido , Microscopia Crioeletrônica , Biologia Computacional/métodosRESUMO
The Dispatched protein, which is related to the NPC1 and PTCH1 cholesterol transporters1,2 and to H+-driven transporters of the RND family3,4, enables tissue-patterning activity of the lipid-modified Hedgehog protein by releasing it from tightly -localized sites of embryonic expression5-10. Here we determine a cryo-electron microscopy structure of the mouse protein Dispatched homologue 1 (DISP1), revealing three Na+ ions coordinated within a channel that traverses its transmembrane domain. We find that the rate of Hedgehog export is dependent on the Na+ gradient across the plasma membrane. The transmembrane channel and Na+ binding are disrupted in DISP1-NNN, a variant with asparagine substitutions for three intramembrane aspartate residues that each coordinate and neutralize the charge of one of the three Na+ ions. DISP1-NNN and variants that disrupt single Na+ sites retain binding to, but are impaired in export of the lipid-modified Hedgehog protein to the SCUBE2 acceptor. Interaction of the amino-terminal signalling domain of the Sonic hedgehog protein (ShhN) with DISP1 occurs via an extensive buried surface area and contacts with an extended furin-cleaved DISP1 arm. Variability analysis reveals that ShhN binding is restricted to one extreme of a continuous series of DISP1 conformations. The bound and unbound DISP1 conformations display distinct Na+-site occupancies, which suggests a mechanism by which transmembrane Na+ flux may power extraction of the lipid-linked Hedgehog signal from the membrane. Na+-coordinating residues in DISP1 are conserved in PTCH1 and other metazoan RND family members, suggesting that Na+ flux powers their conformationally driven activities.
Assuntos
Microscopia Crioeletrônica , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Sódio/metabolismo , Animais , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Hedgehog/ultraestrutura , Lipídeos de Membrana/química , Lipídeos de Membrana/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos , Modelos Moleculares , MutaçãoRESUMO
DNA methylation and H3K9me are hallmarks of heterochromatin in plants and mammals, and are successfully maintained across generations. The biochemical and structural basis for this maintenance is poorly understood. The maintenance DNA methyltransferase from Zea mays, ZMET2, recognizes dimethylation of H3K9 via a chromodomain (CD) and a bromo adjacent homology (BAH) domain, which flank the catalytic domain. Here, we show that dinucleosomes are the preferred ZMET2 substrate, with DNA methylation preferentially targeted to linker DNA. Electron microscopy shows one ZMET2 molecule bridging two nucleosomes within a dinucleosome. We find that the CD stabilizes binding, whereas the BAH domain enables allosteric activation by the H3K9me mark. ZMET2 further couples recognition of H3K9me to an increase in the specificity for hemimethylated versus unmethylated DNA. We propose a model in which synergistic coupling between recognition of nucleosome spacing, H3K9 methylation, and DNA modification allows ZMET2 to maintain DNA methylation in heterochromatin with high fidelity.
Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Nucleossomos/enzimologia , Proteínas de Plantas/metabolismo , Animais , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/ultraestrutura , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Microscopia Eletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Xenopus laevis/genética , Xenopus laevis/metabolismoRESUMO
The transient receptor potential ion channel TRPA1 is expressed by primary afferent nerve fibres, in which it functions as a low-threshold sensor for structurally diverse electrophilic irritants, including small volatile environmental toxicants and endogenous algogenic lipids1. TRPA1 is also a 'receptor-operated' channel whose activation downstream of metabotropic receptors elicits inflammatory pain or itch, making it an attractive target for novel analgesic therapies2. However, the mechanisms by which TRPA1 recognizes and responds to electrophiles or cytoplasmic second messengers remain unknown. Here we use strutural studies and electrophysiology to show that electrophiles act through a two-step process in which modification of a highly reactive cysteine residue (C621) promotes reorientation of a cytoplasmic loop to enhance nucleophilicity and modification of a nearby cysteine (C665), thereby stabilizing the loop in an activating configuration. These actions modulate two restrictions controlling ion permeation, including widening of the selectivity filter to enhance calcium permeability and opening of a canonical gate at the cytoplasmic end of the pore. We propose a model to explain functional coupling between electrophile action and these control points. We also characterize a calcium-binding pocket that is highly conserved across TRP channel subtypes and accounts for all aspects of calcium-dependent TRPA1 regulation, including potentiation, desensitization and activation by metabotropic receptors. These findings provide a structural framework for understanding how a broad-spectrum irritant receptor is controlled by endogenous and exogenous agents that elicit or exacerbate pain and itch.
Assuntos
Cálcio/metabolismo , Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Cisteína/metabolismo , Condutividade Elétrica , Humanos , Iodoacetamida/farmacologia , Modelos Moleculares , Mutação , Oximas/farmacologia , Canal de Cátion TRPA1/genéticaRESUMO
The serum level of iron in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing the internalization and degradation of ferroportin1. Aberrant ferroportin activity can lead to diseases of iron overload, such as haemochromatosis, or iron limitation anaemias2. Here we determine cryogenic electron microscopy structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with hepcidin and the iron mimetic cobalt. These structures and accompanying molecular dynamics simulations identify two metal-binding sites within the N and C domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy terminus of hepcidin directly contacts the divalent metal in the ferroportin C domain. Hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, in which only ferroportin molecules loaded with iron are targeted for degradation. More broadly, our structural and functional insights may enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.