Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(19): 3519-3537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34658279

RESUMO

Recently, food safety issues caused by contaminants have aroused great public concern. The development of innovative and efficient sensing techniques for contaminants detection in food matrix is in urgent demand. As fluorescent nanomaterials, noble metal nanoclusters have attracted much attention because of their ease of synthesis, enhanced catalytic activity and biocompatibility, and most importantly, excellent photoluminescence property that provides promising analytical applications. This review comprehensively introduced the synthesis method of noble metal nanoclusters, and summarized the application of metal nanoclusters as fluorescent sensing materials in the detection of pollutants, including pesticides, heavy metal, mycotoxin, food additives, and other contaminants in food. The detection mechanism of pesticide residues mostly relies on the inhibition of natural enzymes. For heavy metals, the detection mechanism is mainly related to the interaction between metal ions and nanoclusters or ligands. It is evidenced that metal nanoclusters have great potential application in the field of food safety monitoring. Moreover, challenges and future trends of nanoclusters were discussed. We hope that this review can provide insights and directions for the application of nanoclusters in contaminants detection.


Assuntos
Metais Pesados , Nanoestruturas , Praguicidas , Inocuidade dos Alimentos/métodos , Nanoestruturas/química , Corantes
2.
J Nanobiotechnology ; 21(1): 314, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667389

RESUMO

Second near-infrared (NIR-II) fluorescence imaging in the range of 1000-1700 nm has great prospects for in vivo imaging and theranostics monitoring. At present, few NIR-II probes with theranostics properties have been developed, especially the high-performance organic theranostics material remains underexploited. Herein, we demonstrate a selenium (Se)-tailoring method to develop high-efficient NIR-II imaging-guided material for in vivo cancer phototheranostics. Via Se-tailoring strategy, conjugated oligomer TPSe-based nanoparticles (TPSe NPs) achieve bright NIR-II emission up to 1400 nm and exhibit a relatively high photothermal conversion efficiency of 60% with good stability. Moreover, the TPSe NPs demonstrate their photothermal ablation of cancer cells in vitro and tumor in vivo with the guidance of NIR-II imaging. It is worth noting that the TPSe NPs have good biocompatibility without obvious side effects. Thus, this work provides new insight into the development of NIR-II theranostics agents.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Imagem Óptica , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
3.
Ecotoxicol Environ Saf ; 239: 113668, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623151

RESUMO

Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.


Assuntos
Poluentes Ambientais , Resíduos de Praguicidas , Poluentes Ambientais/análise , Corantes Fluorescentes , Limite de Detecção , Paraoxon/análise , Resíduos de Praguicidas/análise , Reprodutibilidade dos Testes
4.
Bioorg Chem ; 110: 104813, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774493

RESUMO

MutT Homolog 1 (MTH1) has been proven to hydrolyze oxidized nucleotide triphosphates during DNA repair. It can prevent the incorporation of wrong nucleotides during DNA replication and mitigate cell apoptosis. In a cancer cell, abundant reactive oxygen species can lead to substantial DNA damage and DNA mutations by base-pairing mismatch. MTH1 could eliminate oxidized dNTP and prevent cancer cells from entering cell death. Therefore, inhibition of MTH1 activity is considered to be an anti-cancer therapeutic target. In this study, high-throughput screening techniques were combined with a fragment-based library containing 2,313 compounds, which were used to screen for lead compounds with MTH1 inhibitor activity. Four compounds with MTH1 inhibitor ability were selected, and compound MI0639 was found to have the highest effective inhibition. To discover the selectivity and specificity of this action, several derivatives based on the MTH1 and MI0639 complex structure were synthesized. We compared 14 complex structures of MTH1 and the various compounds in combination with enzymatic inhibition and thermodynamic analysis. Nanomolar-range IC50 inhibition abilities by enzyme kinetics and Kd values by thermodynamic analysis were obtained for two compounds, named MI1020 and MI1024. Based on structural information and compound optimization, we aim to provide a strategy for the development of MTH1 inhibitors with high selectivity and specificity.


Assuntos
Antineoplásicos/farmacologia , Enzimas Reparadoras do DNA/antagonistas & inibidores , Diaminas/farmacologia , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Diaminas/síntese química , Diaminas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
5.
Biosens Bioelectron ; 228: 115191, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924690

RESUMO

Researchers have struggled to develop highly reliable and sensitive surface-enhanced Raman scattering (SERS) substrates for detecting compounds in complicated systems. In this work, a strategy by constructing Au cores with incompletely wrapped Prussian blue (PB) for highly reliable and sensitive SERS substrate is proposed. The wrapped PB layers can provide the internal standard (IS) to calibrate the SERS signal floatation, whereas the exposed surface of Au cores offers the enhancement effect. The balance between the signal self-calibration and enhancement (hence the trade-off between SERS reliability and sensitivity) is obtained by the approximate semi-wrapping configuration of PB layers on Au cores (i.e., SW-Au@PB). The proposed SW-Au@PB nanoparticles (NPs) exhibit the similar enhancement factor as the pristine Au NPs and contribute to the ultralow RSD (8.55%) of calibrated SERS signals using R6G as probe molecules. The simultaneously realized reliability and sensitivity of SW-Au@PB NPs also enables the detection of hazardous pesticide residues such as paraquat and thiram in herbal plants, with the average detection accuracy up to 92%. Overall, this work mainly provides a controllable synthetic strategy for incompletely wrapped NPs, and most importantly, explores the potential with a proof-of-concept practical application in accurate and sensitive Raman detection of hazardous substances with varying solubility.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman , Reprodutibilidade dos Testes , Prata/química
6.
J Hazard Mater ; 424(Pt B): 127555, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879534

RESUMO

Pesticide residue contamination has become an urgent issue since it threatens both the natural environment and public health. In this study, a fluorescent method for detecting dithiocarbamate (DTC) compounds was constructed based on novel nickel nanoclusters (Ni NCs) and copper ions (Cu2+). The water-soluble fluorescent Ni NCs were synthesized for the first time through a one-pot method using glutathione as stabilizer and ascorbic acid as reducing agent. The as-prepared Ni NCs exhibited a maximum fluorescence emission at 445 nm when excited by 380 nm. And they displayed aggregation-induced emission enhancement when ethylene glycol was introduced into the nanocluster aqueous solution. Based on the Ni NCs, a label-free fluorescence quenching sensor was established for sensitive and selective detection of DTC compounds with the assistance of Cu2+. The complex formed by DTC and Cu2+ led to fluorescence quenching of Ni NCs through inner filter effect. The sensing method was successfully applied to two typical DTC compounds, thiram and disulfiram, with good linearity over a wide linear range and a low detection limit. Moreover, the proposed approach was capable of thiram detection in real samples, which confirms the potential of this sensing method as a platform for DTC compound detection.


Assuntos
Cobre , Níquel , Corantes Fluorescentes , Espectrometria de Fluorescência , Água
7.
J Hazard Mater ; 431: 128606, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278952

RESUMO

Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Mercúrio , Técnicas Biossensoriais/métodos , DNA , DNA Catalítico/química , Humanos , Mercúrio/química
8.
Biosensors (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821639

RESUMO

Copper nanoclusters (Cu NCs) with their inherent optical and chemical advantages have gained increasing attention as a kind of novel material that possesses great potential, primarily in the use of contaminants sensing and bio-imaging. With a focus on environmental safety, this article comprehensively reviews the recent advances of Cu NCs in the application of various contaminants, including pesticide residues, heavy metal ions, sulfide ions and nitroaromatics. The common preparation methods and sensing mechanisms are summarized. The typical high-quality sensing probes based on Cu NCs towards various target contaminants are presented; additionally, the challenges and future perspectives in the development and application of Cu NCs in monitoring and analyzing environmental pollutants are discussed.


Assuntos
Cobre , Poluentes Ambientais , Nanopartículas Metálicas , Poluentes Ambientais/análise , Íons
9.
J Pharm Anal ; 11(5): 653-660, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34765279

RESUMO

A new electrochemical sensor for organophosphate pesticide (methyl-paraoxon) detection based on bifunctional cerium oxide (CeO2) nanozyme is here reported for the first time. Methyl-paraoxon was degraded into p-nitrophenol by using CeO2 with phosphatase mimicking activity. The CeO2 nanozyme-modified electrode was then synthesized to detect p-nitrophenol. Cyclic voltammetry was applied to investigate the electrochemical behavior of the modified electrode, which indicates that the signal enhancement effect may attribute to the coating of CeO2 nanozyme. The current research also studied and discussed the main parameters affecting the analytical signal, including accumulation potential, accumulation time, and pH. Under the optimum conditions, the present method provided a wider linear range from 0.1 to 100 µmol/L for methyl-paraoxon with a detection limit of 0.06 µmol/L. To validate the proof of concept, the electrochemical sensor was then successfully applied for the determination of methyl-paraoxon in three herb samples, i.e., Coix lacryma-jobi, Adenophora stricta and Semen nelumbinis. Our findings may provide new insights into the application of bifunctional nanozyme in electrochemical detection of organophosphorus pesticide.

10.
Chin Med ; 14: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719837

RESUMO

Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, ß-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA