Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924465

RESUMO

Accurate segmentation of entity categories is the critical step for 3D scene understanding. This paper presents a fast deep neural network model with Dense Conditional Random Field (DCRF) as a post-processing method, which can perform accurate semantic segmentation for 3D point cloud scene. On this basis, a compact but flexible framework is introduced for performing segmentation to the semantics of point clouds concurrently, contribute to more precise segmentation. Moreover, based on semantics labels, a novel DCRF model is elaborated to refine the result of segmentation. Besides, without any sacrifice to accuracy, we apply optimization to the original data of the point cloud, allowing the network to handle fewer data. In the experiment, our proposed method is conducted comprehensively through four evaluation indicators, proving the superiority of our method.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37938966

RESUMO

Image alignment and registration methods typically rely on visual correspondences across common regions and boundaries to guide the alignment process. Without them, the problem becomes significantly more challenging. Nevertheless, in real world, image fragments may be corrupted with no common boundaries and little or no overlap. In this work, we address the problem of learning the alignment of image fragments with gaps (i.e., without common boundaries or overlapping regions). Our setting is unsupervised, having only the fragments at hand with no ground truth to guide the alignment process. This is usually the situation in the restoration of unique archaeological artifacts such as frescoes and mosaics. Hence, we suggest a self-supervised approach utilizing self-examples which we generate from the existing data and then feed into an adversarial neural network. Our idea is that available information inside fragments is often sufficiently rich to guide their alignment with good accuracy. Following this observation, our method splits the initial fragments into sub-fragments yielding a set of aligned pieces. Thus, sub-fragmentation allows exposing new alignment relations and revealing inner structures and feature statistics. In fact, the new sub-fragments construct true and false alignment relations between fragments. We feed this data to a spatial transformer GAN which learns to predict the alignment between fragments gaps. We test our technique on various synthetic datasets as well as large scale frescoes and mosaics. Results demonstrate our method's capability to learn the alignment of deteriorated image fragments in a self-supervised manner, by examining inner image statistics for both synthetic and real data.

3.
Biomed Signal Process Control ; 81: 104486, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36505089

RESUMO

The ground glass opacity (GGO) of the lung is one of the essential features of COVID-19. The GGO in computed tomography (CT) images has various features and low-intensity contrast between the GGO and edge structures. These problems pose significant challenges for segmenting the GGO. To tackle these problems, we propose a new threshold method for accurate segmentation of GGO. Specifically, we offer a framework for adjusting the threshold parameters according to the image contrast. Three functions include Attention mechanism threshold, Contour equalization, and Lung segmentation (ACL). The lung is divided into three areas using the attention mechanism threshold. Further, the segmentation parameters of the attention mechanism thresholds of the three parts are adaptively adjusted according to the image contrast. Only the segmentation regions restricted by the lung segmentation results are retained. Extensive experiments on four COVID datasets show that ACL can segment GGO images at low contrast well. Compared with the state-of-the-art methods, the similarity Dice of the ACL segmentation results is improved by 8.9%, the average symmetry surface distance ASD is reduced by 23%, and the required computational power F L O P s are only 0.09% of those of deep learning models. For GGO segmentation, ACL is more lightweight, and the accuracy is higher. Code will be released at https://github.com/Lqs-github/ACL.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37294655

RESUMO

We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37015424

RESUMO

Textureless objects, repetitive patterns and limited computational resources pose significant challenges to man-made structure reconstruction from images, because feature-points-based reconstruction methods usually fail due to the lack of distinct texture or ambiguous point matches. Meanwhile multi-view stereo approaches also suffer from high computational complexity. In this paper, we present a new framework to reconstruct 3D surfaces for buildings from multi-view images by leveraging another fundamental geometric primitive: line segments. To this end, we first propose a new multi-resolution line segment detector to extract 2D line segments from each image. Then, we construct a 3D line cloud by introducing an improved Line3D++ algorithm to match 2D line segments from different images. Finally, we reconstruct a complete and manifold surface mesh from 3D line segments by formulating a Bayesian probabilistic modeling problem, which accurately generates a set of underlying planes. This output model is simple and has low performance requirements for hardware devices. Experimental results demonstrate the validity of the proposed approach and its ability to generate abstract and compact surface meshes from the 3D line cloud with low computational costs.

6.
J Vis (Tokyo) ; 24(1): 69-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32837222

RESUMO

Abstract: Many visual analytics have been developed for examining scientific publications comprising wealthy data such as authors and citations. The studies provide unprecedented insights on a variety of applications, e.g., literature review and collaboration analysis. However, visual information (e.g., figures) that is widely employed for storytelling and methods description are often neglected. We present VIStory, an interactive storyboard for exploring visual information in scientific publications. We harvest a new dataset of a large corpora of figures, using an automatic figure extraction method. Each figure contains various attributes such as dominant color and width/height ratio, together with faceted metadata of the publication including venues, authors, and keywords. To depict these information, we develop an intuitive interface consisting of three components: (1) Faceted View enables efficient query by publication metadata, benefiting from a nested table structure, (2) Storyboard View arranges paper rings-a well-designed glyph for depicting figure attributes, in a themeriver layout to reveal temporal trends, and (3) Endgame View presents a highlighted figure together with the publication metadata. We illustrate the applicability of VIStory with case studies on two datasets, i.e., 10-year IEEE VIS publications, and publications by a research team at CVPR, ICCV, and ECCV conferences. Quantitative and qualitative results from a formal user study demonstrate the efficiency of VIStory in exploring visual information in scientific publications.

7.
IEEE Trans Vis Comput Graph ; 27(2): 475-484, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048720

RESUMO

We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.

8.
IEEE Trans Vis Comput Graph ; 26(1): 759-769, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31443018

RESUMO

In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.

9.
IEEE Trans Vis Comput Graph ; 26(2): 1372-1384, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30222577

RESUMO

In this paper, we describe a novel procedural modeling technique for generating realistic plant models from multi-view photographs. The realism is enhanced via visual and spatial information acquired from images. In contrast to previous approaches that heavily rely on user interaction to segment plants or recover branches in images, our method automatically estimates an accurate depth map of each image and extracts a 3D dense point cloud by exploiting an efficient stereophotogrammetry approach. Taking this point cloud as a soft constraint, we fit a parametric plant representation to simulate the plant growth progress. In this way, we are able to synthesize parametric plant models from real data provided by photos and 3D point clouds. We demonstrate the robustness of the proposed approach by modeling various plants with complex branching structures and significant self-occlusions. We also demonstrate that the proposed framework can be used to reconstruct ground-covering plants, such as bushes and shrubs which have been given little attention in the literature. The effectiveness of our approach is validated by visually and quantitatively comparing with the state-of-the-art approaches.

10.
IEEE Trans Vis Comput Graph ; 24(12): 3096-3110, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29990142

RESUMO

The aspect ratio of a line chart heavily influences the perception of the underlying data. Different methods explore different criteria in choosing aspect ratios, but so far, it was still unclear how to select aspect ratios appropriately for any given data. This paper provides a guideline for the user to choose aspect ratios for any input 1D curves by conducting an in-depth analysis of aspect ratio selection methods both theoretically and experimentally. By formulating several existing methods as line integrals, we explain their parameterization invariance. Moreover, we derive a new and improved aspect ratio selection method, namely the -LOR (local orientation resolution), with a certain degree of parameterization invariance. Furthermore, we connect different methods, including AL (arc length based method), the banking to 45 principle, RV (resultant vector) and AS (average absolute slope), as well as -LOR and AO (average absolute orientation). We verify these connections by a comparative evaluation involving various data sets, and show that the selections by RV and -LOR are complementary to each other for most data. Accordingly, we propose the dual-scale banking technique that combines the strengths of RV and -LOR, and demonstrate its practicability using multiple real-world data sets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA