Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 49(3): 677-698, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635192

RESUMO

Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions. Conventionally, reconstruction algorithms have been derived from physical principles. These algorithms rely on assumptions and approximations of the underlying measurement model, limiting image quality in settings where these assumptions break down. Conversely, more sophisticated solutions based on statistical modeling or careful parameter tuning or derived from increased model complexity can be sensitive to different environments. Recently, deep learning-based methods, which are optimized in a data-driven fashion, have gained popularity. These model-agnostic techniques often rely on generic model structures and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning and exploiting domain knowledge. These model-based solutions yield high robustness and require fewer parameters and training data than conventional neural networks. In this work we provide an overview of these techniques from the recent literature and discuss a wide variety of ultrasound applications. We aim to inspire the reader to perform further research in this area and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on model-based deep learning techniques for medical ultrasound.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Ultrassonografia , Algoritmos , Radiografia , Processamento de Imagem Assistida por Computador/métodos
2.
Ultrasound Med Biol ; 49(7): 1518-1526, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088606

RESUMO

OBJECTIVE: Tissue mechanical properties are valuable markers for tissue characterization, aiding in the detection and staging of pathologies. Shear wave elastography (SWE) offers a quantitative assessment of tissue mechanical characteristics based on the SW propagation profile, which is derived from the SW particle motion. Improving the signal-to-noise ratio (SNR) of the SW particle motion would directly enhance the accuracy of the material property estimates such as elasticity or viscosity. METHODS: In this paper, we present a 3-D multi-resolution convolutional neural network (MRCNN) to perform improved estimation of the SW particle velocity Vz. Additionally, we propose a novel approach to generate training data from real acquisitions, providing high SNR ground truth target data, one-to-one paired to inputs that are corrupted with real-world noise and disturbances. DISCUSSION: By testing the network on in vitro data acquired from a commercial breast elastography phantom, we show that the MRCNN outperforms Loupas' autocorrelation algorithm with an improved SNR of 4.47 dB for the Vz signals, a two-fold decrease in the standard deviation of the downstream elasticity estimates, and a two-fold increase in the contrast-to-noise ratio of the elasticity maps. The generalizability of the network was further demonstrated with a set of ex vivo porcine liver data. CONCLUSION: The proposed MRCNN outperforms the standard autocorrelation method, in particular in low SNR regimes.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Suínos , Técnicas de Imagem por Elasticidade/métodos , Fígado/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Razão Sinal-Ruído , Imagens de Fantasmas
3.
IEEE Trans Med Imaging ; 39(8): 2676-2687, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32406829

RESUMO

Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, video-level, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Pneumonia Viral/diagnóstico por imagem , Ultrassonografia/métodos , Betacoronavirus , COVID-19 , Humanos , Pulmão/diagnóstico por imagem , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA