Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(6): 5365-5377, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35106687

RESUMO

INTRODUCTION: North East (NE) India is the second centre for the origin of rice and is enriched with a diverse collection of traditional rice accessions. These genotypes possess unique traits of breeding interest and are rich in grain nutritional and cooking qualities. Therefore, quantitative trait loci (QTLs)/genes associated with the various quality traits may be identified through genome-wide association studies (GWAS) and used in crop improvement programmes. METHODS AND RESULTS: A pool of 526 unique rice accessions from Assam, North East (NE) India were characterized by using 9 grain-quality traits and grouped into 16 clusters. Among these, the highest number of 156 (29.65%) genotypes belongs to diverse phenotypic classes; Sali, Lahi, and Chokuwa were grouped into cluster 6. The first three principal components showed 54.76% of morphological variability with Eigenvalue >1. Genome-wide association studies (GWAS) was performed in 103 rice accessions using 42,446 SNP markers. A total of 11 significant marker-trait associations were detected for 5 grain-quality traits, explaining 0.22-8.86% of phenotypic variation (PV). In-silico mining of QTLs detected 'candidate genes' associated with the quality traits. CONCLUSIONS: The phenotypic diversity among the 526 rice accessions of NE India was studied using grain quality traits and grouped into 16 significantly different clusters. The QTLs, or candidate genes identified for various grain quality traits, may be used in breeding programmes for the development of improved rice varieties.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
2.
Genomics ; 113(3): 1037-1047, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482327

RESUMO

The 297 winter rice accessions of Assam, North East India were genotyped by sequencing (GBS). The 50,985 high-quality SNPs were filtered and assigned to 12 rice chromosomes. The population structure analysis revealed three major subgroups SG1, SG2, and SG3 consisting of 30, 8, and 143 accessions respectively. The remaining 116 accessions were grouped as admixture population. Phenotypic data were recorded on13 agronomical traits for genome-wide association studies (GWAS). The 60 significant marker-trait associations (MTAs) were identified for 11 agronomical traits, which explained 0 to 15% of phenotypic variance (PV). A QTL 'hot spot' was detected near the centromeric region on chromosome 6. The identified QTLs may be validated and utilized in 'genomics assisted breeding' for improvement of existing rice cultivars of Assam and North East India.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Oryza/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
3.
Plant Sci ; 242: 278-287, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566845

RESUMO

Rice is a staple cereal of India cultivated in about 43.5Mha area but with relatively low average productivity. Abiotic factors like drought, flood and salinity affect rice production adversely in more than 50% of this area. Breeding rice varieties with inbuilt tolerance to these stresses offers an economically viable and sustainable option to improve rice productivity. Availability of high quality reference genome sequence of rice, knowledge of exact position of genes/QTLs governing tolerance to abiotic stresses and availability of DNA markers linked to these traits has opened up opportunities for breeders to transfer the favorable alleles into widely grown rice varieties through marker-assisted backcross breeding (MABB). A large multi-institutional project, "From QTL to variety: marker-assisted breeding of abiotic stress tolerant rice varieties with major QTLs for drought, submergence and salt tolerance" was initiated in 2010 with funding support from Department of Biotechnology, Government of India, in collaboration with International Rice Research Institute, Philippines. The main focus of this project is to improve rice productivity in the fragile ecosystems of eastern, northeastern and southern part of the country, which bear the brunt of one or the other abiotic stresses frequently. Seven consistent QTLs for grain yield under drought, namely, qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2, qDTY9.1 and qDTY12.1 are being transferred into submergence tolerant versions of three high yielding mega rice varieties, Swarna-Sub1, Samba Mahsuri-Sub1 and IR 64-Sub1. To address the problem of complete submergence due to flash floods in the major river basins, the Sub1 gene is being transferred into ten highly popular locally adapted rice varieties namely, ADT 39, ADT 46, Bahadur, HUR 105, MTU 1075, Pooja, Pratikshya, Rajendra Mahsuri, Ranjit, and Sarjoo 52. Further, to address the problem of soil salinity, Saltol, a major QTL for salt tolerance is being transferred into seven popular locally adapted rice varieties, namely, ADT 45, CR 1009, Gayatri, MTU 1010, PR 114, Pusa 44 and Sarjoo 52. Genotypic background selection is being done after BC2F2 stage using an in-house designed 50K SNP chip on a set of twenty lines for each combination, identified with phenotypic similarity in the field to the recipient parent. Near-isogenic lines with more than 90% similarity to the recipient parent are now in advanced generation field trials. These climate smart varieties are expected to improve rice productivity in the adverse ecologies and contribute to the farmer's livelihood.


Assuntos
Secas , Inundações , Oryza/genética , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Programas Governamentais , Índia , Oryza/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Seleção Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA