Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 7992-7998, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454950

RESUMO

In this study, we have delved into various reactions conducted using green solvents or under solvent-free conditions, employing hydrogen bonding organocatalysis to advance more sustainable practices in chemical synthesis. The outcomes suggest that cyclopentyl methyl ether could potentially replace non-polar organic solvents such as hexane and toluene with comparable enantioselectivity and yields. The non-polar nature of liquefied or supercritical CO2 restricts its application to reactions that require non-polar solvents. Furthermore, pursuing solvent-free conditions, even without liquid substrates, might result in similar conversion rates with reduced catalyst loading. These findings highlight the potential of exploring solvent-free conditions when enantioselectivity is not of concern. Based on the results, solvent-free conditions and bio-based solvents can serve as viable alternatives to conventional organic solvents without compromising performance. This is expected to influence the way chemists approach reaction optimisation within method development in the field, fostering a broader adoption of environmentally friendly approaches.

2.
RSC Adv ; 13(28): 18991-19001, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362332

RESUMO

ß-lactamases are enzymes that deactivate ß-lactam antibiotics through a hydrolysis mechanism. There are two known types of ß-lactamases: serine ß-lactamases (SBLs) and metallo ß-lactamases (MBLs). The two existing strategies to overcome ß-lactamase-mediated resistance are (a) to develop novel ß-lactam antibiotics that are not susceptible to hydrolysis by these enzymes; or (b) to develop ß-lactamase inhibitors that deactivate the enzyme and thereby restore the efficacy of the co-administered antibiotics. Many commercially available SBL inhibitors are used in combination therapy with antibiotics to treat antimicrobial resistant infections; however, there are only a handful of MBL inhibitors undergoing clinical trials. In this study, we present 11 novel potential MBL inhibitors (via multi-step chemical synthesis), that have shown to completely restore the efficacy of meropenem (≤2 mg L-1) against New Delhi metallo-ß-lactamase (NDM) producing Klebsiella pneumoniae in vitro. These compounds contain a cyclic amino acid zinc chelator conjugated to various commercially available ß-lactam antibiotic scaffolds with the aim to improve the overall drug transport, lipophilicity, and pharmacokinetic/pharmacodynamic properties as compared to the chelator alone. Biological evaluation of compounds 24b and 24c has further highlighted the downstream application of these MBLs, since they are non-toxic at the selected doses. Time-kill assays indicate that compounds 24b and 24c exhibit sterilizing activity towards NDM producing Klebsiella pneumoniae in vitro using minimal concentrations of meropenem. Furthermore, 24b and 24c proved to be promising inhibitors of VIM-2 (Ki = 0.85 and 1.87, respectively). This study has revealed a novel series of ß-lactam MBLIs that are potent, efficacious, and safe leads with the potential to develop into therapeutic MBLIs.

3.
ACS Infect Dis ; 9(3): 486-496, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786013

RESUMO

ß-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant Enterobacterales expressing metallo-ß-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort ß-lactam drugs, that is, carbapenems, are therefore desperately needed. Herein, we present a cyclic zinc chelator covalently attached to a ß-lactam scaffold (cephalosporin), that is, BP1. Observations from in vitro assays (with seven MBL expressing bacteria from different geographies) have indicated that BP1 restored the efficacy of meropenem to ≤ 0.5 mg/L, with sterilizing activity occurring from 8 h postinoculation. Furthermore, BP1 was nontoxic against human hepatocarcinoma cells (IC50 > 1000 mg/L) and exhibited a potency of (Kiapp) 24.8 and 97.4 µM against Verona integron-encoded MBL (VIM-2) and New Delhi metallo ß-lactamase (NDM-1), respectively. There was no inhibition observed from BP1 with the human zinc-containing enzyme glyoxylase II up to 500 µM. Preliminary molecular docking of BP1 with NDM-1 and VIM-2 sheds light on BP1's mode of action. In Klebsiella pneumoniae NDM infected mice, BP1 coadministered with meropenem was efficacious in reducing the bacterial load by >3 log10 units' postinfection. The findings herein propose a favorable therapeutic combination strategy that restores the activity of the carbapenem antibiotic class and complements the few MBL inhibitors under development, with the ultimate goal of curbing antimicrobial resistance.


Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Animais , Humanos , Camundongos , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Meropeném/farmacologia , Lactamas , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Monobactamas , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA