Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 149(7): 1431-7, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726432

RESUMO

We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool.


Assuntos
RNA Polimerase II/metabolismo , Transcrição Gênica , Archaea/enzimologia , Archaea/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Humanos , Filmes Cinematográficos , RNA Polimerase II/química , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Nature ; 577(7792): 717-720, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969703

RESUMO

Gene transcription by RNA polymerase II is regulated by activator proteins that recruit the coactivator complexes SAGA (Spt-Ada-Gcn5-acetyltransferase)1,2 and transcription factor IID (TFIID)2-4. SAGA is required for all regulated transcription5 and is conserved among eukaryotes6. SAGA contains four modules7-9: the activator-binding Tra1 module, the core module, the histone acetyltransferase (HAT) module and the histone deubiquitination (DUB) module. Previous studies provided partial structures10-14, but the structure of the central core module is unknown. Here we present the cryo-electron microscopy structure of SAGA from the yeast Saccharomyces cerevisiae and resolve the core module at 3.3 Å resolution. The core module consists of subunits Taf5, Sgf73 and Spt20, and a histone octamer-like fold. The octamer-like fold comprises the heterodimers Taf6-Taf9, Taf10-Spt7 and Taf12-Ada1, and two histone-fold domains in Spt3. Spt3 and the adjacent subunit Spt8 interact with the TATA box-binding protein (TBP)2,7,15-17. The octamer-like fold and its TBP-interacting region are similar in TFIID, whereas Taf5 and the Taf6 HEAT domain adopt distinct conformations. Taf12 and Spt20 form flexible connections to the Tra1 module, whereas Sgf73 tethers the DUB module. Binding of a nucleosome to SAGA displaces the HAT and DUB modules from the core-module surface, allowing the DUB module to bind one face of an ubiquitinated nucleosome.


Assuntos
Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae , Transativadores/química , Transativadores/ultraestrutura , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/ultraestrutura , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo , Ubiquitinação
3.
Mol Cell ; 46(1): 18-29, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22405652

RESUMO

UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA strand stall transcription elongation by RNA polymerase II (Pol II). If the nucleotide excision repair machinery does not promptly remove the CPDs, stalled Pol II creates a roadblock for DNA replication and subsequent rounds of transcription. Here we present evidence that Pol II has an intrinsic capacity for translesion synthesis (TLS) that enables bypass of the CPD with or without repair. Translesion synthesis depends on the trigger loop and bridge helix, the two flexible regions of the Pol II subunit Rpb1 that participate in substrate binding, catalysis, and translocation. Substitutions in Rpb1 that promote lesion bypass in vitro increase UV resistance in vivo, and substitutions that inhibit lesion bypass decrease cell survival after UV irradiation. Thus, translesion transcription becomes essential for cell survival upon accumulation of the unrepaired CPD lesions in genomic DNA.


Assuntos
Dano ao DNA/efeitos da radiação , Dímeros de Pirimidina/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , DNA Fúngico/biossíntese , DNA Fúngico/genética , Genoma Fúngico/fisiologia , Dímeros de Pirimidina/genética , RNA Polimerase II/genética , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
4.
Genes Dev ; 25(19): 2093-105, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940764

RESUMO

Cell growth is regulated during RNA polymerase (Pol) I transcription initiation by the conserved factor Rrn3/TIF-IA in yeast/humans. Here we provide a structure-function analysis of Rrn3 based on a combination of structural biology with in vivo and in vitro functional assays. The Rrn3 crystal structure reveals a unique HEAT repeat fold and a surface serine patch. Phosphorylation of this patch represses human Pol I transcription, and a phospho-mimetic patch mutation prevents Rrn3 binding to Pol I in vitro and reduces cell growth and Pol I gene occupancy in vivo. Cross-linking indicates that Rrn3 binds Pol I between its subcomplexes, AC40/19 and A14/43, which faces the serine patch. The corresponding region of Pol II binds the Mediator head that cooperates with transcription factor (TF) IIB. Consistent with this, the Rrn3-binding factor Rrn7 is predicted to be a TFIIB homolog. This reveals the molecular basis of Rrn3-regulated Pol I initiation and cell growth, and indicates a general architecture of eukaryotic transcription initiation complexes.


Assuntos
DNA Polimerase I/metabolismo , Modelos Moleculares , Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Serina/metabolismo
5.
Nature ; 471(7337): 249-53, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21346759

RESUMO

During gene transcription, RNA polymerase (Pol) II moves forwards along DNA and synthesizes messenger RNA. However, at certain DNA sequences, Pol II moves backwards, and such backtracking can arrest transcription. Arrested Pol II is reactivated by transcription factor IIS (TFIIS), which induces RNA cleavage that is required for cell viability. Pol II arrest and reactivation are involved in transcription through nucleosomes and in promoter-proximal gene regulation. Here we present X-ray structures at 3.3 Å resolution of an arrested Saccharomyces cerevisiae Pol II complex with DNA and RNA, and of a reactivation intermediate that additionally contains TFIIS. In the arrested complex, eight nucleotides of backtracked RNA bind a conserved 'backtrack site' in the Pol II pore and funnel, trapping the active centre trigger loop and inhibiting mRNA elongation. In the reactivation intermediate, TFIIS locks the trigger loop away from backtracked RNA, displaces RNA from the backtrack site, and complements the polymerase active site with a basic and two acidic residues that may catalyse proton transfers during RNA cleavage. The active site is demarcated from the backtrack site by a 'gating tyrosine' residue that probably delimits backtracking. These results establish the structural basis of Pol II backtracking, arrest and reactivation, and provide a framework for analysing gene regulation during transcription elongation.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Modelos Biológicos , Modelos Moleculares , Movimento , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Relação Estrutura-Atividade , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Tirosina/química , Tirosina/metabolismo
6.
Mol Cell ; 34(6): 710-21, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560423

RESUMO

We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.


Assuntos
Pareamento Incorreto de Bases , RNA Polimerase II/fisiologia , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/metabolismo
7.
Nucleic Acids Res ; 43(7): 3726-35, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800739

RESUMO

Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.


Assuntos
Mitocôndrias/metabolismo , Modelos Biológicos , Transcrição Gênica , Humanos
8.
Nucleic Acids Res ; 42(6): 3884-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393772

RESUMO

The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Iniciação da Transcrição Genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Humanos , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/metabolismo
9.
Proteins ; 83(10): 1849-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219431

RESUMO

CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
EMBO J ; 30(23): 4755-63, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22056778

RESUMO

During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.


Assuntos
RNA Polimerase II , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Fatores de Elongação da Transcrição/metabolismo
11.
EMBO J ; 30(7): 1302-10, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21386817

RESUMO

Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP-associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5-RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N-terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C-terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.


Assuntos
Proteínas Cromossômicas não Histona/química , RNA Polimerases Dirigidas por DNA/química , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimologia , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos
12.
Nucleic Acids Res ; 38(12): 4040-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20197319

RESUMO

Spt5 is the only known RNA polymerase-associated factor that is conserved in all three domains of life. We have solved the structure of the Methanococcus jannaschii Spt4/5 complex by X-ray crystallography, and characterized its function and interaction with the archaeal RNAP in a wholly recombinant in vitro transcription system. Archaeal Spt4 and Spt5 form a stable complex that associates with RNAP independently of the DNA-RNA scaffold of the elongation complex. The association of Spt4/5 with RNAP results in a stimulation of transcription processivity, both in the absence and the presence of the non-template strand. A domain deletion analysis reveals the molecular anatomy of Spt4/5--the Spt5 Nus-G N-terminal (NGN) domain is the effector domain of the complex that both mediates the interaction with RNAP and is essential for its elongation activity. Using a mutagenesis approach, we have identified a hydrophobic pocket on the Spt5 NGN domain as binding site for RNAP, and reciprocally the RNAP clamp coiled-coil motif as binding site for Spt4/5.


Assuntos
Proteínas Arqueais/química , Proteínas Cromossômicas não Histona/química , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Mathanococcus , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Elongação da Transcrição/metabolismo
13.
Nucleic Acids Res ; 37(17): 5803-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620213

RESUMO

Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop beta10-beta11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation-elongation transition.


Assuntos
DNA/química , Modelos Moleculares , RNA Polimerase II/química , Transcrição Gênica , Teorema de Bayes , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , RNA/química , Moldes Genéticos
14.
Nat Commun ; 12(1): 2034, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795673

RESUMO

COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mapas de Interação de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera
15.
Nat Commun ; 12(1): 5224, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471130

RESUMO

The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Pontos de Checagem do Ciclo Celular , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA/metabolismo , Histonas/metabolismo , Humanos , Fosforilação , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição
16.
Nat Commun ; 12(1): 5523, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535646

RESUMO

RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Vírus/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Fatores de Tempo , Proteínas Virais/metabolismo , Viroides/metabolismo
17.
Transcription ; 10(1): 37-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30375921

RESUMO

SAGA and NuA4 are coactivator complexes required for transcription on chromatin. Although they contain different enzymatic and biochemical activities, both contain the large Tra1 subunit. Recent electron microscopy studies have resolved the complete structure of Tra1 and its integration in SAGA/NuA4, providing important insight into Tra1 function.


Assuntos
Histona Acetiltransferases/fisiologia , Glicoproteínas de Membrana/fisiologia , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/fisiologia , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Transativadores/fisiologia , Ativação Transcricional
19.
Nat Commun ; 8(1): 1914, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203770

RESUMO

TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP-TFB-RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/ß. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the S ulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host-virus relationship.


Assuntos
RNA Polimerase II/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sulfolobus solfataricus/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica
20.
Nat Commun ; 6: 6161, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635909

RESUMO

The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , DNA Arqueal/química , DNA Arqueal/metabolismo , RNA Arqueal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA