RESUMO
BACKGROUND & AIMS: Post-acute COVID-19 syndrome (PACS) is associated with sleep disturbance, but treatment options are limited. The etiology of PACS may be secondary to alterations in the gut microbiome. Here, we report the efficacy of fecal microbiota transplantation (FMT) in alleviating post-COVID insomnia symptoms in a nonrandomized, open-label prospective interventional study. METHODS: Between September 22, 2022, and May 22, 2023, we recruited 60 PACS patients with insomnia defined as Insomnia Severity Index (ISI) ≥8 and assigned them to the FMT group (FMT at weeks 0, 2, 4, and 8; n = 30) or the control group (n = 30). The primary outcome was clinical remission defined by an ISI of <8 at 12 weeks. Secondary outcomes included changes in the Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder-7 scale, Epworth Sleepiness Scale, Multidimensional Fatigue Inventory, blood cortisol and melatonin, and gut microbiome analysis on metagenomic sequencing. RESULTS: At week 12, more patients in the FMT than the control group had insomnia remission (37.9% vs 10.0%; P = .018). The FMT group showed a decrease in ISI score (P < .0001), Pittsburgh Sleep Quality Index (P < .0001), Generalized Anxiety Disorder-7 scale (P = .0019), Epworth Sleepiness Scale (P = .0057), and blood cortisol concentration (P = .035) from baseline to week 12, but there was no significant change in the control group. There was enrichment of bacteria such as Gemmiger formicilis and depletion of microbial pathways producing menaquinol derivatives after FMT. The gut microbiome profile resembled that of the donor in FMT responders but not in nonresponders at week 12. There was no serious adverse event. CONCLUSIONS: This pilot study showed that FMT could be effective and safe in alleviating post-COVID insomnia, and further clinical trials are warranted. CLINICALTRIALS: gov, Number: NCT05556733.
RESUMO
BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.
Assuntos
COVID-19/microbiologia , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/genética , Imunidade/fisiologia , Isoleucina/biossíntese , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , SARS-CoV-2 , Índice de Gravidade de DoençaRESUMO
BACKGROUND & AIMS: Beyond bacteria, the human gastrointestinal tract is host to a vast diversity of fungi, collectively known as the gut mycobiome. Little is known of the impact of geography, ethnicity, and urbanization on the gut mycobiome at a large population level. We aim to delineate the variation of human gut mycobiome and its association with host factors, environmental factors, and diets. METHODS: Using shotgun metagenomic sequencing, we profiled and compared the fecal mycobiome of 942 healthy individuals across different geographic regions in China (Hong Kong and Yunnan), spanning 6 ethnicities: Han, Zang, Bai, Hani, Dai, and Miao (including both urban and rural residents of each ethnicity). In parallel to fecal sampling, we collected participant metadata (environmental exposure, bowel habits, anthropometrics, and medication), diet, and clinical blood measurement results (a total of 118 variables) and investigated their impact on the gut mycobiome variation in humans. RESULTS: The human gut mycobiome was highly variable across populations. Urbanization-related factors had the strongest impact on gut mycobiome variation, followed by geography, dietary habit, and ethnicity. The Hong Kong population (highly urbanized) had a significantly lower fungal richness compared with Yunnan population. Saccharomyces cerevisiae was highly enriched in urban compared with rural populations and showed significant inverse correlations with liver pathology-associated blood parameters, including aspartate transaminase, alanine transaminase, gamma-glutamyltransferase, and direct bilirubin. Candida dubliniensis, which was decreased in urban relative to rural populations, showed correlations with host metabolism-related parameters in blood, including a positive correlation with fasting high-density lipoprotein cholesterol levels and a negative correlation with fasting glucose levels. The fungal-blood parameter correlations were highly geography- and ethnicity-specific. Food choices had differential influences on gut mycobiome and bacterial microbiome, where taxa from the same genus tended to be coregulated by food and thereby cobloom. Ethnicity-specific fungal signatures were associated with distinct habitual foods in each ethnic group. CONCLUSIONS: Our data highlight, for the first time to our knowledge, that geography, urbanization, ethnicity, and habitual diet play an important role in shaping the gut mycobiome composition. Gut fungal configurations in combination with population characteristics (such as residing region, ethnicity, diet, lifestyle) influence host metabolism and health.
Assuntos
Etnicidade , Microbioma Gastrointestinal , População Rural , População Urbana , Adulto , Índice de Massa Corporal , China , Dieta , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Estilo de Vida , Masculino , MetagenômicaRESUMO
OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.
Assuntos
Bactérias , COVID-19 , Disbiose , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal , Imunidade , SARS-CoV-2 , Adulto , Bactérias/genética , Bactérias/imunologia , Bactérias/isolamento & purificação , Proteína C-Reativa/análise , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Citocinas/análise , DNA Bacteriano/isolamento & purificação , Disbiose/epidemiologia , Disbiose/etiologia , Disbiose/imunologia , Disbiose/virologia , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Hong Kong , Humanos , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Transferases/análiseRESUMO
BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.
Assuntos
Betacoronavirus , Infecções por Coronavirus/microbiologia , Disbiose/virologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Pneumonia Viral/microbiologia , Adulto , Idoso , COVID-19 , Feminino , Trato Gastrointestinal/microbiologia , Hong Kong/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Projetos Piloto , SARS-CoV-2RESUMO
OBJECTIVE: The pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC. DESIGN: Deep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2. RESULTS: In UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC. CONCLUSION: We demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.
Assuntos
Colite Ulcerativa/virologia , Disbiose/virologia , Microbioma Gastrointestinal , Mucosa Intestinal/virologia , Reto/virologia , Adulto , Estudos de Casos e Controles , China , Colite Ulcerativa/patologia , Disbiose/patologia , Feminino , Humanos , Masculino , Reto/patologiaRESUMO
Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1-13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.
Assuntos
Transtorno do Espectro Autista , Bactérias , Biomarcadores , Fezes , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Transtorno do Espectro Autista/microbiologia , Transtorno do Espectro Autista/diagnóstico , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Fezes/microbiologia , Biomarcadores/análise , Lactente , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metagenômica/métodos , Aprendizado de Máquina , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Archaea/isolamento & purificação , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação , MetagenomaRESUMO
The mechanisms underlying the many phenotypic manifestations of post-acute COVID-19 syndrome (PACS) are poorly understood. Herein, we characterized the gut microbiome in heterogeneous cohorts of subjects with PACS and developed a multi-label machine learning model for using the microbiome to predict specific symptoms. Our processed data covered 585 bacterial species and 500 microbial pathways, explaining 12.7% of the inter-individual variability in PACS. Three gut-microbiome-based enterotypes were identified in subjects with PACS and associated with different phenotypic manifestations. The trained model showed an accuracy of 0.89 in predicting individual symptoms of PACS in the test set and maintained a sensitivity of 86% and a specificity of 82% in predicting upcoming symptoms in an independent longitudinal cohort of subjects before they developed PACS. This study demonstrates that the gut microbiome is associated with phenotypic manifestations of PACS, which has potential clinical utility for the prediction and diagnosis of PACS.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Aprendizado de Máquina , Fenótipo , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , COVID-19/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Idoso , Fezes/microbiologia , Fezes/virologia , Estudos de Coortes , Estudos LongitudinaisRESUMO
The gut fungi play important roles in human health and are involved in energy metabolism. This study aimed to examine gut mycobiome composition in obese subjects in two geographically different regions in China and to identify specific gut fungi associated with obesity. A total of 217 subjects from two regions with different urbanization levels [Hong Kong (HK): obese, n = 59; lean, n = 59; Kunming (KM): obese, n = 50; lean, n = 49. Mean body mass index (BMI) for obesity = 33.7] were recruited. We performed deep shotgun metagenomic sequencing on fecal samples to compare gut mycobiome composition and trophic functions in lean and obese subjects across these two regions. The gut mycobiome of obese subjects in both HK and KM were altered compared to those of lean subjects, characterized by a decrease in the relative abundance of Nakaseomyces, Schizosaccharomyces pombe, Candida dubliniensis and an increase in the abundance of Lanchanceathermotolerans, Saccharomyces paradox, Parastagonospora nodorum and Myceliophthorathermophila. Reduced fungal - bacterial and fungal - fungal correlations as well as increased negative fungal-bacterial correlations were observed in the gut of obese subjects. Furthermore, the anti-obesity effect of fungus S. pombe was further validated using a mouse model. Supplementing high-fat diet-induced obese mice with the fungus for 12 weeks led to a significant reduction in body weight gain (p < 0.001), and an improvement in lipid and glucose metabolism compared to mice without intervention. In conclusion, the gut mycobiome composition and functionalities of obese subjects were altered. These data shed light on the potential of utilizing fungus-based therapeutics for the treatment of obesity. S. pombe may serve as a potential fungal probiotic in the prevention of diet-induced obesity and future human trials are needed.
Assuntos
Fezes , Fungos , Microbioma Gastrointestinal , Micobioma , Obesidade , Obesidade/microbiologia , Humanos , Animais , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Masculino , Camundongos , China , Feminino , Fezes/microbiologia , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Índice de Massa CorporalRESUMO
BACKGROUND: Post-acute COVID-19 syndrome (PACS) affects over 65 million individuals worldwide but treatment options are scarce. We aimed to assess a synbiotic preparation (SIM01) for the alleviation of PACS symptoms. METHODS: In this randomised, double-blind, placebo-controlled trial at a tertiary referral centre in Hong Kong, patients with PACS according to the US Centers for Disease Control and Prevention criteria were randomly assigned (1:1) by random permuted blocks to receive SIM01 (10 billion colony-forming units in sachets twice daily) or placebo orally for 6 months. Inclusion criterion was the presence of at least one of 14 PACS symptoms for 4 weeks or more after confirmed SARS-CoV-2 infection, including fatigue, memory loss, difficulty in concentration, insomnia, mood disturbance, hair loss, shortness of breath, coughing, inability to exercise, chest pain, muscle pain, joint pain, gastrointestinal upset, or general unwellness. Individuals were excluded if they were immunocompromised, were pregnant or breastfeeding, were unable to receive oral fluids, or if they had received gastrointestinal surgery in the 30 days before randomisation. Participants, care providers, and investigators were masked to group assignment. The primary outcome was alleviation of PACS symptoms by 6 months, assessed by an interviewer-administered 14-item questionnaire in the intention-to-treat population. Forward stepwise multivariable logistical regression was performed to identify predictors of symptom alleviation. The trial is registered with ClinicalTrials.gov, NCT04950803. FINDINGS: Between June 25, 2021, and Aug 12, 2022, 463 patients were randomly assigned to receive SIM01 (n=232) or placebo (n=231). At 6 months, significantly higher proportions of the SIM01 group had alleviation of fatigue (OR 2·273, 95% CI 1·520-3·397, p=0·0001), memory loss (1·967, 1·271-3·044, p=0·0024), difficulty in concentration (2·644, 1·687-4·143, p<0·0001), gastrointestinal upset (1·995, 1·304-3·051, p=0·0014), and general unwellness (2·360, 1·428-3·900, p=0·0008) compared with the placebo group. Adverse event rates were similar between groups during treatment (SIM01 22 [10%] of 232 vs placebo 25 [11%] of 231; p=0·63). Treatment with SIM01, infection with omicron variants, vaccination before COVID-19, and mild acute COVID-19, were predictors of symptom alleviation (p<0·0036). INTERPRETATION: Treatment with SIM01 alleviates multiple symptoms of PACS. Our findings have implications on the management of PACS through gut microbiome modulation. Further studies are warranted to explore the beneficial effects of SIM01 in other chronic or post-infection conditions. FUNDING: Health and Medical Research Fund of Hong Kong, Hui Hoy and Chow Sin Lan Charity Fund, and InnoHK of the HKSAR Government. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Simbióticos , Gravidez , Feminino , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Hong Kong/epidemiologia , Método Duplo-Cego , Transtornos da Memória , Resultado do TratamentoRESUMO
Despite recent progress in our understanding of the association between the gut microbiome and inflammatory bowel disease (IBD), the role of microbiome biomarkers in IBD diagnosis remains underexplored. Here we developed a microbiome-based diagnostic test for IBD. By utilization of metagenomic data from 5,979 fecal samples with and without IBD from different geographies and ethnicities, we identified microbiota alterations in IBD and selected ten and nine bacterial species for construction of diagnostic models for ulcerative colitis and Crohn's disease, respectively. These diagnostic models achieved areas under the curve >0.90 for distinguishing IBD from controls in the discovery cohort, and maintained satisfactory performance in transethnic validation cohorts from eight populations. We further developed a multiplex droplet digital polymerase chain reaction test targeting selected IBD-associated bacterial species, and models based on this test showed numerically higher performance than fecal calprotectin in discriminating ulcerative colitis and Crohn's disease from controls. Here we discovered universal IBD-associated bacteria and show the potential applicability of a multibacteria biomarker panel as a noninvasive tool for IBD diagnosis.
RESUMO
The impact of gestational diabetes mellitus (GDM) on maternal or infant microbiome trajectory remains poorly understood. Utilizing large-scale longitudinal fecal samples from 264 mother-baby dyads, we present the gut microbiome trajectory of the mothers throughout pregnancy and infants during the first year of life. GDM mothers had a distinct microbiome diversity and composition during the gestation period. GDM leaves fingerprints on the infant's gut microbiome, which are confounded by delivery mode. Further, Clostridium species positively correlate with a larger head circumference at month 12 in male offspring but not females. The gut microbiome of GDM mothers with male fetuses displays depleted gut-brain modules, including acetate synthesis I and degradation and glutamate synthesis II. The gut microbiome of female infants of GDM mothers has higher histamine degradation and dopamine degradation. Together, our integrative analysis indicates that GDM affects maternal and infant gut composition, which is associated with sexually dimorphic infant head growth.
Assuntos
Diabetes Gestacional , Fezes , Microbioma Gastrointestinal , Feminino , Humanos , Diabetes Gestacional/microbiologia , Gravidez , Masculino , Lactente , Fezes/microbiologia , Cabeça/microbiologia , Adulto , Recém-Nascido , Clostridium/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/microbiologiaRESUMO
BACKGROUND: Faecal microbiota transplantation (FMT) has been shown to improve symptoms in a proportion of patients with irritable bowel syndrome (IBS). AIM: We performed a randomised trial to assess the efficacy of FMT in patients with IBS. METHODS: We randomised 56 patients with diarrhoea-predominant IBS 1:1 to FMT or placebo via the duodenal route at baseline and week 4. The primary outcome was > 50 points decrease in IBS severity scoring system (IBS-SSS) score at week 12. Secondary outcomes were improvement in bloating and change in gut microbiota at week 12. After 12-week follow-up, those in the placebo group were assigned to receive open-label FMT. RESULTS: At week 12, 57.1% in the FMT group and 46.4% in the placebo group achieved the primary endpoint (p = 0.42). More patients receiving FMT than placebo had improvement in bloating (72% vs 30%; p = 0.005). In an open-label extension, 65.2% and 82.4% of patients achieved, respectively, the primary endpoint and improvement in bloating. Faecal microbiome of patients in the FMT group showed a reduction in bacteria like Ruminococcus gnavus and enrichment of bacteria such as Lawsonibacter at week 12, while no change in the placebo group. Functional analyses showed that the hydrogen sulphide-producing pathway decreased in patients who had FMT (p < 0.05) accompanied by a reduction in contributing bacteria. There were no serious adverse events related to FMT. CONCLUSION: FMT performed twice at an interval of four weeks did not significantly reduce IBS-SSS score. However, more patients had improvement in abdominal bloating, which was associated with a reduction in hydrogen sulphide-producing bacteria. (ClinicalTrials.gov NCT03125564).
Assuntos
Sulfeto de Hidrogênio , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/microbiologia , Transplante de Microbiota Fecal/efeitos adversos , Diarreia/terapia , Diarreia/etiologia , Fezes/microbiologia , Resultado do TratamentoRESUMO
BACKGROUND: We previously reported a panel of novel faecal microbiome gene markers for diagnosis of colorectal adenoma and cancer. AIM: To evaluate whether these markers are useful in detecting adenoma recurrence after polypectomy. METHODS: Subjects were enrolled in a polyp surveillance study from 2009 to 2019. Stool samples were collected before bowel preparation of index colonoscopy (baseline) and surveillance colonoscopy (follow-up). Fusobacterium nucleatum (Fn), Lachnoclostridium marker (m3), Clostridium hathewayi (Ch) and Bacteroides clarus were quantified in baseline and follow-up samples by quantitative polymerase chain reaction (qPCR) to correlate with adenoma recurrence. Recurrence was defined as new adenomas detected >6 months after polypectomy. Faecal immunochemical test (FIT) was performed for comparison. RESULTS: A total of 161 baseline and 104 follow-up samples were analysed. Among patients with adenoma recurrence, Fn and m3 increased (both P < 0.05) while Ch were unchanged in follow-up versus baseline samples. Among patients without recurrence, Fn and m3 were unchanged while Ch decreased (P < 0.05) in follow-up versus baseline samples. Logistic regression that included changes of m3, Fn and Ch at follow-up compared with baseline achieved an area under receiver operating characteristic curve (AUROC) of 0.95 (95%CI: 0.84-0.99) with 90.0% sensitivity and 87.0% specificity for detecting recurrent adenoma. Combination of m3, Fn and Ch at follow-up sample achieved AUROC of 0.74 (95%CI: 0.65-0.82) with 81.3% sensitivity and 55.4% specificity for detecting recurrent adenoma. FIT showed limited sensitivity (8.3%) in detecting recurrent adenomas. CONCLUSION: Our combinations of faecal microbiome gene markers can be potentially useful non-invasive tools for detecting adenoma recurrence.
Assuntos
Adenoma , Neoplasias Colorretais , Microbiota , Adenoma/diagnóstico , Adenoma/genética , Adenoma/cirurgia , Clostridiaceae , Colonoscopia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Humanos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Sangue OcultoRESUMO
Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Fezes/microbiologia , Síndrome de COVID-19 Pós-AgudaRESUMO
Systemic characterisation of the human faecal microbiome provides the opportunity to develop non-invasive approaches in the diagnosis of a major human disease. However, shared microbial signatures across different diseases make accurate diagnosis challenging in single-disease models. Herein, we present a machine-learning multi-class model using faecal metagenomic dataset of 2,320 individuals with nine well-characterised phenotypes, including colorectal cancer, colorectal adenomas, Crohn's disease, ulcerative colitis, irritable bowel syndrome, obesity, cardiovascular disease, post-acute COVID-19 syndrome and healthy individuals. Our processed data covers 325 microbial species derived from 14.3 terabytes of sequence. The trained model achieves an area under the receiver operating characteristic curve (AUROC) of 0.90 to 0.99 (Interquartile range, IQR, 0.91-0.94) in predicting different diseases in the independent test set, with a sensitivity of 0.81 to 0.95 (IQR, 0.87-0.93) at a specificity of 0.76 to 0.98 (IQR 0.83-0.95). Metagenomic analysis from public datasets of 1,597 samples across different populations observes comparable predictions with AUROC of 0.69 to 0.91 (IQR 0.79-0.87). Correlation of the top 50 microbial species with disease phenotypes identifies 363 significant associations (FDR < 0.05). This microbiome-based multi-disease model has potential clinical application in disease diagnostics and treatment response monitoring and warrants further exploration.
Assuntos
COVID-19 , Microbiota , Humanos , COVID-19/diagnóstico , Fezes , Aprendizado de Máquina , Síndrome de COVID-19 Pós-AgudaRESUMO
Understanding the role of fecal microbiota transplantation (FMT) in the decolonization of multidrug-resistant organisms (MDRO) is critical. Specifically, little is known about virome changes in MDRO-infected subjects treated with FMT. Using shotgun metagenomic sequencing, we characterized longitudinal dynamics of the gut virome and bacteriome in three recipients who successfully decolonized carbapenem-resistant Enterobacteriaceae (CRE), including Klebsiella spp. and Escherichia coli, after FMT. We observed large shifts of the fecal bacterial microbiota resembling a donor-like community after transfer of a fecal microbiota dominated by the genus Ruminococcus. We found a substantial expansion of Klebsiella phages after FMT with a concordant decrease of Klebsiella spp. and striking increase of Escherichia phages in CRE E. coli carriers after FMT. We also observed the CRE elimination and similar evolution of Klebsiella phage in mice, which may play a role in the collapse of the Klebsiella population after FMT. In summary, our pilot study documented bacteriome and virome alterations after FMT which mediate many of the effects of FMT on the gut microbiome community. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for multidrug-resistant organisms; however, introducing a complex mixture of microbes also has unknown consequences for landscape features of gut microbiome. We sought to understand bacteriome and virome alterations in patients undergoing FMT to treat infection with carbapenem-resistant Enterobacteriaceae. This finding indicates that transkingdom interactions between the virome and bacteriome communities may have evolved in part to support efficient FMT for treating CRE.
Assuntos
Bacteriófagos , Enterobacteriáceas Resistentes a Carbapenêmicos , Animais , Camundongos , Transplante de Microbiota Fecal , Viroma , Escherichia coli , Projetos PilotoRESUMO
Fecal microbiota transplant (FMT) has emerged as a potential treatment for severe colitis associated with graft-versus-host disease (GvHD) following hematopoietic stem cell transplant. Bacterial engraftment from FMT donor to recipient has been reported, however the fate of fungi and viruses after FMT remains unclear. Here we report longitudinal dynamics of the gut bacteriome, mycobiome and virome in a teenager with GvHD after receiving four doses of FMT at weekly interval. After serial FMTs, the gut bacteriome, mycobiome and virome of the patient differ from compositions before FMT with variable temporal dynamics. Diversity of the gut bacterial community increases after each FMT. Gut fungal community initially shows expansion of several species followed by a decrease in diversity after multiple FMTs. In contrast, gut virome community varies substantially over time with a stable rise in diversity. The bacterium, Corynebacterium jeikeium, and Torque teno viruses, decrease after FMTs in parallel with an increase in the relative abundance of Caudovirales bacteriophages. Collectively, FMT may simultaneously impact on the various components of the gut microbiome with distinct effects.
Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/virologia , Micobioma , Viroma , Adolescente , Biodiversidade , Humanos , Masculino , MicrobiotaRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Pré-Escolar , DNA , Microbioma Gastrointestinal/genética , Humanos , RNA , SARS-CoV-2 , ViromaRESUMO
The human-gut-DNA virome is highly diverse and individual specific, but little is known of its variation at a population level. Here, we report the fecal DNA virome of 930 healthy adult subjects from two regions in China (Hong Kong and Yunnan) spanning six ethnicities (Han, Zang, Miao, Bai, Dai, and Hani), and including urban and rural residents for each ethnicity. Twenty host factors were found to significantly correlate with the human-gut virome variation, with geography carrying the strongest impact and ethnicity-distinct diets associating with certain viral species. Urbanization enhances interindividual dissimilarities between gut viromes, with the duration of urban residence associating with multiple bacteriophages, including Lactobacillus phage and Lactococcus phage. Overall, the gut virome presents more heterogeneity relative to the bacterial microbiome across the examined Chinese populations. This study highlights population-based variations and the importance of host and environmental factors in shaping the DNA virome in the human gut.