Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 47(4): 528-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22700866

RESUMO

Although strides have been made to reduce ventilator-induced lung injury (VILI), critically ill patients can vary in sensitivity to VILI, suggesting gene-environment interactions could contribute to individual susceptibility. This study sought to uncover candidate genes associated with VILI using a genome-wide approach followed by functional analysis of the leading candidate in mice. Alveolar-capillary permeability after high tidal volume (HTV) ventilation was measured in 23 mouse strains, and haplotype association mapping was performed. A locus was identified on chromosome 15 that contained ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (Asap1), adenylate cyclase 8 (Adcy8), WNT1-inducible signaling pathway protein 1 (Wisp1), and N-myc downstream regulated 1 (Ndrg1). Information from published studies guided initial assessment to Wisp1. After HTV, lung WISP1 protein increased in sensitive A/J mice, but was unchanged in resistant CBA/J mice. Anti-WISP1 antibody decreased HTV-induced alveolar-capillary permeability in sensitive A/J mice, and recombinant WISP1 protein increased HTV-induced alveolar-capillary permeability in resistant CBA/J mice. HTV-induced WISP1 coimmunoprecipitated with glycosylated Toll-like receptor (TLR) 4 in A/J lung homogenates. After HTV, WISP1 increased in strain-matched control lungs, but was unchanged in TLR4 gene-targeted lungs. In peritoneal macrophages from strain-matched mice, WISP1 augmented LPS-induced TNF release that was inhibited in macrophages from TLR4 or CD14 antigen gene-targeted mice, and was attenuated in macrophages from myeloid differentiation primary response gene 88 gene-targeted or TLR adaptor molecule 1 mutant mice. These findings support a role for WISP1 as an endogenous signal that acts through TLR4 signaling to increase alveolar-capillary permeability in VILI.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Proteínas de Sinalização Intercelular CCN/antagonistas & inibidores , Proteínas de Sinalização Intercelular CCN/genética , Permeabilidade Capilar , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla , Haplótipos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microvasos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Ventiladores Mecânicos/efeitos adversos
2.
Hepatology ; 48(4): 1242-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18704925

RESUMO

UNLABELLED: Loss of the nuclear hormone receptor hepatocyte nuclear factor 4alpha (HNF4alpha) in hepatocytes results in a complex pleiotropic phenotype that includes a block in hepatocyte differentiation and a severe disruption to liver function. Recent analyses have shown that hepatic gene expression is severely affected by the absence of HNF4alpha, with expression of 567 genes reduced by > or =2.5-fold (P < or = 0.05) in Hnf4alpha(-/-) fetal livers. Although many of these genes are direct targets, HNF4alpha has also been shown to regulate expression of other liver transcription factors, and this raises the possibility that the dependence on HNF4alpha for normal expression of some genes may be indirect. We postulated that the identification of transcription factors whose expression is regulated by HNF4alpha might reveal roles for HNF4alpha in controlling hepatic functions that were not previously appreciated. Here we identify cyclic adenosine monophosphate responsive element binding protein H (CrebH) as a transcription factor whose messenger RNA can be identified in both the embryonic mouse liver and adult mouse liver and whose expression is dependent on HNF4alpha. Analyses of genomic DNA revealed an HNF4alpha binding site upstream of the CrebH coding sequence that was occupied by HNF4alpha in fetal livers and facilitated transcriptional activation of a reporter gene in transient transfection analyses. Although CrebH is highly expressed during hepatogenesis, CrebH(-/-) mice were viable and healthy and displayed no overt defects in liver formation. However, upon treatment with tunicamycin, which induces an endoplasmic reticulum (ER)-stress response, CrebH(-/-) mice displayed reduced expression of acute phase response proteins. CONCLUSION: These data implicate HNF4alpha in having a role in controlling the acute phase response of the liver induced by ER stress by regulating expression of CrebH.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Proteínas de Fase Aguda/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Mucosa Gástrica/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Intestino Delgado/metabolismo , Fígado/citologia , Fígado/embriologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , RNA Mensageiro/metabolismo , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA