RESUMO
This study aimed to explore the expression, function, and mechanisms of TBC1D10B in colon cancer, as well as its potential applications in the diagnosis and treatment of the disease.The expression levels of TBC1D10B in colon cancer were assessed by analyzing the TCGA and CCLE databases. Immunohistochemistry analysis was conducted using tumor and adjacent non-tumor tissues from 68 colon cancer patients. Lentiviral infection techniques were employed to silence and overexpress TBC1D10B in colon cancer cells. The effects on cell proliferation, migration, and invasion were evaluated using CCK-8, EDU, wound healing, and Transwell invasion assays. Additionally, GSEA enrichment analysis was used to explore the association of TBC1D10B with biological pathways related to colon cancer. TBC1D10B was significantly upregulated in colon cancer and closely associated with patient prognosis. Silencing of TBC1D10B notably inhibited proliferation, migration, and invasion of colon cancer cells and promoted apoptosis. Conversely, overexpression of TBC1D10B enhanced these cellular functions. GSEA analysis revealed that TBC1D10B is enriched in the AKT/PI3K/mTOR signaling pathway and highly correlated with PAK4. The high expression of TBC1D10B in colon cancer is associated with poor prognosis. It influences cancer progression by regulating the proliferation, migration, and invasion capabilities of colon cancer cells, potentially acting through the AKT/PI3K/mTOR signaling pathway. These findings provide new targets and therapeutic strategies for the treatment of colon cancer.
Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Neoplasias do Colo , Proteínas Ativadoras de GTPase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Quinases Ativadas por p21 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genéticaRESUMO
BACKGROUND: Several proteins in the tripartite-motif (TRIM) family are associated with the development of colorectal cancer (CRC), but research on the role of TRIM69 was lacking. The present study examined the correlation between TRIM69 expression and colon adenocarcinoma (COAD). METHODS: mRNA sequencing data for COAD patients was extracted from The Cancer Genome Atlas to analyze correlations between TRIM69 expression and patients' clinical features as well as survival. Potential associations with immune cells and chemosensitivity also were predicted using various algorithms in the TIMER, Limma, clusterProfiler, GeneMANIA, and Gene Set Cancer Analysis platforms. Subsequently, polymerase chain reaction analysis and immunohistochemical staining were used to detect TRIM69 expression in COAD tissue samples from real-world patients. RESULTS: TRIM69 expression was lower in COAD tissues than in normal tissues and correlated with the pathologic stage and metastasis (M category). Additionally, TRIM69 was found to be involved in several immune-related pathways, notably the NOD-like signaling pathway. These results suggest that high TRIM69 expression has the potential to enhance tumor sensitivity to 5-fluorouracil and programmed cell death protein 1 (PD-1) blockers. CONCLUSIONS: From our findings that TRIM69 expression was significantly reduced in COAD compared with non-cancer tissues and associated with pathologic stage and metastasis, we conclude that increasing TRIM69 expression and/or activity may help to improve therapeutic outcomes. Accordingly, TRIM69 represents a potentially valuable marker of metastasis and target for adjuvant therapy in COAD.
Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Receptor de Morte Celular Programada 1 , Algoritmos , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Background: Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods: The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results: High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion: The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.
RESUMO
Lung adenocarcinoma (LUAD) is one of the most prevalent malignancies. However, its mechanism and therapeutic strategy remain to be clarified. Mangiferin is a flavonoid derived from the leaves of mango trees of the lacquer family that has many pharmacological and physiological effects. This research aimed to elucidate the biological effect of mangiferin in LUAD cell lines and clarify the in vitro mechanism of mangiferin. Mangiferin was shown to significantly restrain the proliferation of LUAD cells (A549, H1299, and H2030 cells) in a dose- and time-dependent manner. Furthermore, mangiferin was capable of stimulating apoptosis, and more cells were blocked in G1 and S phase in the mangiferin-treated cells than in those not treated with mangiferin. Microarrays and micro-RNA sequencing data suggested that there is a higher level of miR-27b and miR-92a in LUAD tissues than in non-LUAD tissues. Additional experiments indicated that mangiferin may be related to the downregulated levels of miR-92a and miR-27b. In conclusion, mangiferin likely regulates proliferation and apoptosis in LUAD cells by reducing the expression levels of miR-92a and miR-27b.
RESUMO
BACKGROUND: The function of miR-31-5p in lung squamous cell carcinoma (LUSC) remains unclear, therefore, a systematic study was performed for the clinical significance and molecular mechanism of miR-31-5p in LUSC. METHODS: Quantitative real-time reverse transcription PCR (qRT-PCR) was utilized to test the expression level of miR-31-5p in 88 LUSC tissue samples and their matching normal tissues. Data from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were also utilized to confirm the expression level and clinical value of miR-31-5p in LUSC. The potential target genes of miR-31-5p were predicted by several online predicted software. Gene ontology (GO), protein-protein interaction (PPI) and pathway analysis were utilized to investigate the underlying molecular mechanism of miR-31-5p in LUSC. RESULTS: The result from qRT-PCR found that there was significant difference of miR-31-5p between LUSC and normal tissues (P<0.001). Meanwhile, Data from TCGA also showed a higher expression of miR-31-5p in LUSC tissues than that in the normal tissues (P<0.001). on the basis of the data of GEO database, five GEO datasets indicated that the expression of miR-31-5p in LUSC tissues was significantly higher than that in normal lung tissues, include GSE51858 (P=0.025), GSE74190 (P<0.000), GSE16025 (P=0.031), GSE25508 (P=0.0.01), and GSE47525 (P=0.049). Moreover, in consideration of the meta-analysis, 1,012 clinical specimens were systematically analyzed via meta-analysis, clinical specimens were systematically analyzed via meta-analysis, and the results showed that the expression of miR-31-5p in LUSC was significantly higher than in the adjacent lung tissues (SMD =0, CI: 1.08-1.45, Z=13.30, P=0.000). In addition, result from GO and pathway analyses showed that potential target genes of miR-31-5p were significantly associated with 20 GO terms and 5 pathways, such as signal transduction, transmembrane receptor protein tyrosine kinase activity, plasma membrane and Rap1 signaling pathway. Meanwhile, we also found thatmiR-31-5p target genes were related to the Rap1 signaling pathway, Oxytocin signaling pathway and Proteoglycans in cancer. Furthermore, six hub genes were identified from PPI and three hub genes, including ADCY6, ADCY9 and EGFR, proved to coexist in the Rap1 signaling pathway, oxytocin signaling pathway and Melanogenesis simultaneously. CONCLUSIONS: According to what has been discussed above, we speculated that miR-31-5p may play a vital role in the occurrence and development of LUSC.