Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(18): 10663-10676, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755037

RESUMO

Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2 S) produced by cystathionine γ-lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti-oxidative and anti-inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co-treatment attenuated the vasoconstriction, hypertension and H2 S reduction caused by angiotensin II (AngII), a well-established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII-induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin-3-independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII-induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild-type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6-mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.


Assuntos
Angiotensina II/toxicidade , Compostos de Bifenilo/farmacologia , Cistationina gama-Liase/metabolismo , Células Endoteliais/efeitos dos fármacos , Desacetilase 6 de Histona/fisiologia , Hipertensão/prevenção & controle , Lignanas/farmacologia , Acetilação , Animais , Aorta , Cistationina gama-Liase/genética , Células HEK293 , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Humanos , Sulfeto de Hidrogênio/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
2.
Pharmacol Res ; 146: 104281, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125601

RESUMO

Cystathionine γ-lyase (CSEγ) is a hydrogen sulfide (H2S)-producing enzyme. Endothelial H2S production can mediate vasodilatory effects, contributing to the alleviation of hypertension (high blood pressure). Recent studies have suggested a role of histone deacetylase 6 (HDAC6) in hypertension, although its underlying mechanisms are poorly understood. Here, we addressed the potential regulation of CSEγ by HDAC6 in angiotensin II (AngII)-induced hypertension and its molecular details focusing on CSEγ posttranslational modification. Treatment of mice with a selective HDAC6 inhibitor tubastatin A (TubA) alleviated high blood pressure and vasoconstriction induced by AngII. Cotreatment of the aorta and human aortic endothelial cells with TubA recovered AngII-mediated decreased H2S levels. AngII treatment upregulated HDAC6 mRNA and protein expression, but conversely downregulated CSEγ protein. Notably, potent HDAC6 inhibitors and HDAC6 siRNA as well as a proteasomal inhibitor increased CSEγ protein levels and blocked the downregulatory effect of AngII on CSEγ. In contrast, other HDAC isoforms-specific inhibitors and siRNAs did not show such blocking effects. Transfected CSEγ protein levels were also reciprocally regulated by AngII and TubA, and were reduced by wild-type, but not by deacetylase-deficient, HDAC6. Moreover, TubA significantly increased both protein stability and K73 acetylation level of CSEγ. Consistent with these results, AngII induced CSEγ ubiquitination and degradation, which was inhibited by TubA. Our results indicate that AngII promoted HDAC6-dependent deacetylation of CSEγ at K73 residue, leading to its ubiquitin-mediated proteolysis, which underlies AngII-induced hypertension. Overall, this study suggests that upregulation of CSEγ and H2S through HDAC6 inhibition may be considered as a valid strategy for preventing the progression of hypertension.


Assuntos
Angiotensina II/farmacologia , Cistationina gama-Liase/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ácidos Hidroxâmicos/farmacologia , Hipertensão/metabolismo , Indóis/farmacologia , Animais , Aorta/citologia , Células Endoteliais/metabolismo , Células HEK293 , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Masculino , Camundongos Endogâmicos C57BL , Proteólise/efeitos dos fármacos
3.
Br J Pharmacol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715438

RESUMO

BACKGROUND AND PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS: Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS: Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA