RESUMO
The natural history of pulmonary vascular disease associated with congenital heart disease (CHD) depends on associated hemodynamics. Patients exposed to increased pulmonary blood flow (PBF) and pulmonary arterial pressure (PAP) develop pulmonary vascular disease more commonly than patients exposed to increased PBF alone. To investigate the effects of these differing mechanical forces on physiologic and molecular responses, we developed two models of CHD using fetal surgical techniques: 1) left pulmonary artery (LPA) ligation primarily resulting in increased PBF and 2) aortopulmonary shunt placement resulting in increased PBF and PAP. Hemodynamic, histologic, and molecular studies were performed on control, LPA, and shunt lambs as well as pulmonary artery endothelial cells (PAECs) derived from each. Physiologically, LPA, and to a greater extent shunt, lambs demonstrated an exaggerated increase in PAP in response to vasoconstricting stimuli compared with controls. These physiologic findings correlated with a pathologic increase in medial thickening in pulmonary arteries in shunt lambs but not in control or LPA lambs. Furthermore, in the setting of acutely increased afterload, the right ventricle of control and LPA but not shunt lambs demonstrates ventricular-vascular uncoupling and adverse ventricular-ventricular interactions. RNA sequencing revealed excellent separation between groups via both principal components analysis and unsupervised hierarchical clustering. In addition, we found hyperproliferation of PAECs from LPA lambs, and to a greater extent shunt lambs, with associated increased angiogenesis and decreased apoptosis in PAECs derived from shunt lambs. A further understanding of mechanical force-specific drivers of pulmonary artery pathology will enable development of precision therapeutics for pulmonary hypertension associated with CHD.
Assuntos
Aorta/fisiopatologia , Hemodinâmica , Artéria Pulmonar/fisiopatologia , Doença Cardiopulmonar/fisiopatologia , Remodelação Vascular , Animais , Aorta/metabolismo , Aorta/patologia , Pressão Arterial/fisiologia , Proliferação de Células , Oclusão Coronária/genética , Oclusão Coronária/metabolismo , Oclusão Coronária/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Feto , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Óxido Nítrico/metabolismo , Gravidez , Cultura Primária de Células , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Circulação Pulmonar/fisiologia , Doença Cardiopulmonar/congênito , Doença Cardiopulmonar/metabolismo , Doença Cardiopulmonar/patologia , OvinosRESUMO
Normal growth and development of lymphatic structures depends on mechanical forces created by accumulating interstitial fluid. However, prolonged exposure to pathologic mechanical stimuli generated by chronically elevated lymph flow results in lymphatic dysfunction. The mechanisms that transduce these mechanical forces are not fully understood. Our objective was to investigate molecular mechanisms that alter the growth and metabolism of isolated lymphatic endothelial cells (LECs) exposed to prolonged pathologically elevated lymph flow in vivo within the anatomic and physiologic context of a large animal model of congenital heart disease with increased pulmonary blood flow using in vitro approaches. To this end, late gestation fetal lambs underwent in utero placement of an aortopulmonary graft (shunt). Four weeks after birth, LECs were isolated and cultured from control and shunt lambs. Redox status and proliferation were quantified, and transcriptional profiling and metabolomic analyses were performed. Shunt LECs exhibited hyperproliferative growth driven by increased levels of Hypoxia Inducible Factor 1α (HIF-1α), along with upregulated expression of known HIF-1α target genes in response to mechanical stimuli and shear stress. Compared to control LECs, shunt LECs exhibited abnormal metabolism including abnormalities of glycolysis, the TCA cycle and aerobic respiration. In conclusion, LECs from lambs exposed in vivo to chronically increased pulmonary lymph flow are hyperproliferative, have enhanced expression of HIF-1α and its target genes, and demonstrate altered central carbon metabolism in vitro. Importantly, these findings suggest provocative therapeutic targets for patients with lymphatic abnormalities.