RESUMO
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Assuntos
Ácidos e Sais Biliares , Desenvolvimento de Medicamentos , Microbioma Gastrointestinal , Transdução de Sinais , Humanos , Ácidos e Sais Biliares/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismoRESUMO
It is a great honor to be invited to write a reflections article on my scientific journey and lifelong bile acid research for the Journal of Biological Chemistry, in which I am proud to have published 24 articles. I have also published 21 articles in the Journal of Lipid Research, another journal of the American Society of Biochemistry and Molecular Biology. I begin my reflections from my early education in Taiwan, my coming to America for graduate study, and continue with my postdoctoral training in cytochrome P450 research, and my lifelong bile acid research career at Northeast Ohio Medical University. I have witnessed and helped in the transformation of this rural not so visible medical school to a well-funded leader in liver research. Writing this reflections article on my long and rewarding journey in bile acid research brings back many good memories. I am proud of my scientific contributions and attribute my academic success to hard work, perseverance, good mentoring, and networking. I hope these reflections of my academic career would help inspire young investigators to pursue an academic career in biochemistry and metabolic diseases.
Assuntos
Ácidos e Sais Biliares , Bioquímica , Pesquisa Biomédica , Fígado , Humanos , Ácidos e Sais Biliares/metabolismo , Bioquímica/história , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Taiwan , Sistema Enzimático do Citocromo P-450 , Ohio , Pesquisa Biomédica/históriaRESUMO
Traumatic spinal cord injury (SCI) is a highly destructive disease in human neurological functions. Adipose-derived mesenchymal stem cells (ADMSCs) have tissue regenerations and anti-inflammations, especially with prion protein overexpression (PrPcOE ). Therefore, this study tested whether PrPcOE -ADMSCs therapy offered benefits in improving outcomes via regulating nod-like-receptor-protein-3 (NLRP3) inflammasome/DAMP signalling after acute SCI in rats. Compared with ADMSCs only, the capabilities of PrPcOE -ADMSCs were significantly enhanced in cellular viability, anti-oxidative stress and migration against H2 O2 and lipopolysaccharide damages. Similarly, PrPcOE -ADMSCs significantly inhibited the inflammatory patterns of Raw264.7 cells. The SD rats (n = 32) were categorized into group 1 (Sham-operated-control), group 2 (SCI), group 3 (SCI + ADMSCs) and group 4 (SCI + PrPcOE -ADMSCs). Compared with SCI group 2, both ADMSCs and PrPcOE -ADMSCs significantly improved neurological functions. Additionally, the circulatory inflammatory cytokines levels (TNF-α/IL-6) and inflammatory cells (CD11b/c+/MPO+/Ly6G+) were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4. By Day 3 after SCI induction, the protein expressions of inflammasome signalling (HGMB1/TLR4/MyD88/TRIF/c-caspase8/FADD/p-NF-κB/NEK7/NRLP3/ASC/c-caspase1/IL-ß) and by Day 42 the protein expressions of DAMP-inflammatory signalling (HGMB1/TLR-4/MyD88/TRIF/TRAF6/p-NF-κB/TNF-α/IL-1ß) in spinal cord tissues displayed an identical pattern as the inflammatory patterns. In conclusion, PrPcOE -ADMSCs significantly attenuated SCI in rodents that could be through suppressing the inflammatory signalling.
Assuntos
Células-Tronco Mesenquimais , Príons , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Príons/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismoRESUMO
This study tested the hypothesis that Jagged2/Notches promoted the endothelial-mesenchymal transition (endMT)-mediated pulmonary arterial hypertension (PAH) (i.e. induction by monocrotaline [MCT]/63 mg/kg/subcutaneous injection) through increasing the expression of GATA-binding factors which were inhibited by propylthiouracil (PTU) (i.e. 0.1% in water for daily drinking since Day 5 after PAH induction) in rodent. As compared with the control (i.e. HUVECs), the protein expressions of GATAs (3/4/6) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly reduced, whereas the endothelial-phenotype markers (CD31/E-cadherin) were significantly increased in silenced JAG2 gene or in silenced GATA3 gene of HUVECs (all p < 0.001). As compared with the control, the protein expressions of intercellular signallings (GATAs [3/4/6], Jagged1/2, notch1/2 and Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly upregulated in TGF-ß/monocrotaline-treated HUVECs that were significantly reversed by PTU treatment (all p < 0.001). By Day 42, the results of animal study demonstrated that the right-ventricular systolic-blood-pressure (RVSBP), RV weight (RVW) and lung injury/fibrotic scores were significantly increased in MCT group than sham-control (SC) that were reversed in MCT + PTU groups, whereas arterial oxygen saturation (%) and vasorelaxation/nitric oxide production of PA exhibited an opposite pattern of RVW among the groups (all p < 0.0001). The protein expressions of hypertrophic (ß-MHC)/pressure-overload (BNP)/oxidative-stress (NOX-1/NOX-2) biomarkers in RV and the protein expressions of intercellular signalling (GATAs3/4/6, Jagged1/2, notch1/2) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/TGF-ß/α-SMA/p-Smad2) in lung parenchyma displayed an identical pattern of RVW among the groups (all p < 0.0001). Jagged-Notch-GATAs signalling, endMT markers and RVSBP that were increased in PAH were suppressed by PTU.
Assuntos
Hipertensão Arterial Pulmonar , Animais , Hipertensão Arterial Pulmonar/genética , Fibronectinas , Vimentina , Regulação para Cima , Receptores Notch/genética , Proteínas Serrate-Jagged , Monocrotalina , Hipertensão Pulmonar Primária FamiliarRESUMO
PURPOSE OF REVIEW: This review aims to provide a concise update on recent advances in understanding of the bile acid metabolism and signaling in health and diseases. RECENT FINDINGS: CYP2C70 has been identified as the murine cytochrome p450 enzyme that mediates the synthesis of muricholic acids to account for the major different bile acid composition between human and mice. Several studies have linked nutrient sensing bile acid signaling to the regulation of hepatic autophagy-lysosome activity, an integral pathway of the cellular adaptive response to starvation. Distinct bile acid-mediated signaling mechanisms have been shown to contribute to the complex metabolic changes post bariatric surgery, suggesting that pharmacological manipulation of the enterohepatic bile acid signaling could be a potential nonsurgical alternative to weight loss surgery. SUMMARY: Basic and clinical studies have continued to discover novel roles of the enterohepatic bile acid signaling in regulation of key metabolic pathways. Such knowledge forms the molecular basis needed for developing safe and effective bile acid-based therapeutics for treating metabolic and inflammatory diseases.
Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares , Humanos , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais , FígadoRESUMO
Acute kidney injury (AKI) is commonly encountered and causes high mortality in hospitalized patients; however, effective therapies for AKI have still not been established. Accordingly, we performed a rodent model with acute renal ischemia-reperfusion (IR) and tested the hypothesis that combined tacrolimus and melatonin therapy could be superior to either one for protecting the kidney against IR injury. Adult-male SD rat (n = 30) were equally categorized into group 1 (receiving laparotomy only), group 2 (IR treated by 3.0 cc/normal-saline), group 3 [IR + tacrolimus/0.5 mg/kg by intravenous administration at 30 minutes and at days 1/2/3 after IR], group 4 (IR + melatonin/50 mg/kg by intra-peritoneal administration at 30 minutes and 25 mg/kg at days 1/2/3 after IR] and group 5 (IR + tacrolimus +melatonin). By day 3 after IR, the creatinine/BUN levels and ratio of urine protein to urine creatinine were highest in group 2, lowest in group 1 and significantly lower in group 5 than in groups 3/4 (all P < .0001), but they did not differ between the groups 3/4. The protein expressions of oxidative-stress (p47phox/NOX-1/NOX-2/NOX-4), upstream (TLR4/MAL/MyD88/TRAF6/ASK1/MKK4/MKK7/NF-κB) and downstream (IL-6/INF-γ/MMP-9/IL-1ß) inflammatory signaling, MAPK-family-signaling cascades(ERK1/2, JNK/p38/c-JUN), apoptotic/autophagic (p53/caspase 3/mitochondrial-Bax, ratio of LC3B-II/LC3B-I), and mitochondrial-damaged (cyclophilin D/cytochrome C/DRP1) biomarkers, and the expressions of inflammatory-immune cells (F4/80, CD14/CD3/CD8) as well as the kidney injured score exhibited an identical pattern of creatinine level (all P < .0001). In conclusion, combined tacrolimus and melatonin therapy was better than either single one on protecting the kidney functional and anatomical integrity against IR injury through suppressing inflammation and the generation of oxidative stress.
Assuntos
Injúria Renal Aguda/prevenção & controle , Melatonina/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Tacrolimo/farmacologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Antioxidantes/farmacologia , Quimioterapia Combinada , Imunossupressores/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologiaRESUMO
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animais , Ácidos e Sais Biliares , HumanosRESUMO
This study tested the hypothesis that combined therapy with human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) and hyperbaric oxygen (HBO) was superior to either one on preserving neurological function and reducing brain haemorrhagic volume (BHV) in rat after acute intracerebral haemorrhage (ICH) induced by intracranial injection of collagenase. Adult male SD rats (n = 30) were equally divided into group 1 (sham-operated control), group 2 (ICH), group 3 (ICH +HUCDMSCs/1.2 × 106 cells/intravenous injection at 3h and days 1 and 2 after ICH), group 4 (ICH +HBO/at 3 hours and days 1 and 2 after ICH) and group 5 (ICH +HUCDMSCs-HBO), and killed by day 28 after ICH. By day 1, the neurological function was significantly impaired in groups 2-5 than in group 1 (P < .001), but it did not differ among groups 2 to 5. By days 7, 14 and 28, the integrity of neurological function was highest in group 1, lowest in group 2 and significantly progressively improved from groups 3 to 5 (all P < .001). By day 28, the BHV was lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3/4 (all P < .0001). The protein expressions of inflammation (HMGB1/TLR-2/TLR-4/MyD88/TRAF6/p-NF-κB/IFN-γ/IL-1ß/TNF-α), oxidative stress/autophagy (NOX-1/NOX-2/oxidized protein/ratio of LC3B-II/LC3B-I) and apoptosis (cleaved-capspase3/PARP), and cellular expressions of inflammation (CD14+, F4/80+) in brain tissues exhibited an identical pattern, whereas cellular levels of angiogenesis (CD31+/vWF+/small-vessel number) and number of neurons (NeuN+) exhibited an opposite pattern of BHV among the groups (all P < .0001). These results indicate that combined HUCDMSC-HBO therapy offered better outcomes after rat ICH.
Assuntos
Encefalopatias/terapia , Oxigenoterapia Hiperbárica/métodos , Inflamação/terapia , Hemorragias Intracranianas/complicações , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Apoptose , Encefalopatias/etiologia , Encefalopatias/patologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-DawleyRESUMO
This study tested the hypothesis that therapy with double overexpression of miR-19a-3p and miR-20a-5p (miRDOE ) to human inducible pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) was superior to iPS-MSCs alone for preserving renal function in rat with pre-existing chronic kidney disease (CKD), followed by ischaemia-reperfusion (IR) injury. In vitro study demonstrated that the protein expressions of oxidative stress (NOX-1/NOX-2/NOX4/oxidized protein/p22phox), inflammatory downstream signalling (TLR2&4/MyD88/TRAF6/IKK-ß/p-NFκB/IL-1ß/IL-6/MMP-9) and cell apoptosis/death signalling (cleaved caspase-3/mitochondrial Bax/p-ERKs/p-JNK/p-p38) at time-points of 24-hour/48-hour cell cultures were significantly increased in p-Cresol-treated NRK-52E cells than in the control that was significantly reversed by miR-19a-3p-transfected iPS-MSC (all P < .001). Animals were categorized into group 1 (sham-operated control), group 2 (CKD-IR), group 3 (CKD-IR + oligo-miRDOE of iPS-MSCs/6.0 ×105 /intra-renal artery transfusion/3 hours after IR procedure), group 4 (CKD-IR + iPS-MSCs) and group 5 (CKD-IR + miRDOE of iPS-MSCs/6.0 ×105/ intra-renal artery transfusion/3 hour after IR procedure). By day 35, the creatinine/BUN levels were lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3 and 4 (all P < .0001) but they showed no difference between the latter two groups. The protein expressions of oxidative stress, inflammatory downstream signalling and cell apoptosis/death signalling exhibited an identical pattern of creatinine level among the five groups (all P < .00001). Also, the microscopic findings demonstrated that the kidney injury score/fibrotic area/number of inflammatory cells (CD14+/CD68+) exhibited an identical pattern of creatine level (all P < .0001). The miRDOE of iPS-MSCs was superior to iPS-MSCs for preserving the residual kidney function and architecture in CKD-IR rat.
Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/farmacologia , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de SinaisRESUMO
BACKGROUND/PURPOSE: Endometriosis (EM) is linked to cardiovascular disease (CVD). However, whether this finding can be applied to the Taiwanese population remained unanswered. To investigate the association between EM and major adverse cardiovascular and cerebrovascular events (MACCE) and the therapeutic effect on the risk of MACCE in Asian women with EM. A retrospective population-based cohort study was performed. METHODS: A total of 17 543 patients with EM aged between 18 and 50 years were identified from a general population of 1 million Taiwanese after excluding diagnoses of major CVD and cerebrovascular accident (CVA) prior to EM. The comparison group (n = 70 172) without EM was selected by matching the study cohort with age, sex, and income and urbanization levels in a 4:1 ratio. RESULTS: During a median follow-up period of 9.2 years, Taiwanese women with EM had a significantly higher frequency of comorbidities, medical and surgical treatment, and MACCE than did their non-EM counterparts (2.76% vs 2.18%, P < .0001). After adjustment for comorbidities, patients with EM had an approximately 1.2-fold increased risk of MACCE (95% CI 1.05-1.29; P = .0053) and a higher cumulative incidence of MACCE compared with the normal population. Neither medical nor surgical treatment increased the risk of MACCE. Furthermore, medical treatment for EM appeared to be protective against MACCE. CONCLUSION: Taiwanese women with EM not only had a substantially higher frequency of comorbidities but also an increased risk of MACCE compared with the general population.
Assuntos
Doenças Cardiovasculares , Transtornos Cerebrovasculares , Endometriose , Adolescente , Adulto , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/epidemiologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/epidemiologia , Estudos de Coortes , Endometriose/epidemiologia , Endometriose/etiologia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto JovemRESUMO
Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm-factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.
Assuntos
Aprendizado Profundo , Frutas , Imageamento Hiperespectral , Redes Neurais de ComputaçãoRESUMO
This study tested the hypothesis that melatonin (Mel) therapy preserved the brain architectural and functional integrity against ischaemic stroke (IS) dependently through suppressing the inflammatory/oxidative stress downstream signalling pathways. Adult male B6 (n = 6 per each B6 group) and TLR4 knockout (ie TLR4-/- ) (n = 6 per each TLR4-/- group) mice were categorized into sham control (SCB6 ), SCTLR4-/- , ISB6 , ISTLR4-/- , ISB6 + Mel (i.p. daily administration) and ISTLR4-/- + Mel (i.p. daily administration). By day 28 after IS, the protein expressions of inflammatory (HMBG1/TLR2/TLR4/MAL/MyD88/RAM TRIF/TRAF6/IKK-α/p-NF-κB/nuclear-NF-κB/nuclear-IRF-3&7/IL-1ß/IL-6/TNF-α/IFN-γ) and oxidative stress (NOX-1/NOX-2/ASK1/p-MKK4&7/p-JNK/p-c-JUN) downstream pathways as well as mitochondrial-damaged markers (cytosolic cytochrome C/cyclophilin D/SRP1/autophagy) were highest in group ISB6 , lowest in groups SCB6 and SCTLR4-/- , lower in group ISTLR4-/- + Mel than in groups ISTLR4-/- and ISB6 + Mel and lower in group ISB6 + Mel than in group ISTLR4-/- (all P < .0001). The brain infarct volume, brain infarct area and the number of inflammatory cells in brain (CD14/F4-88) and in circulation (MPO+//Ly6C+/CD11b+//Ly6G+/CD11b+) exhibited an identical pattern, whereas the neurological function displayed an opposite pattern of inflammatory protein expression among the six groups (all P < .0001). In conclusion, TLR inflammatory and oxidative stress signallings played crucial roles for brain damage and impaired neurological function after IS that were significantly reversed by Mel therapy.
Assuntos
Inflamação/patologia , AVC Isquêmico/tratamento farmacológico , Melatonina/uso terapêutico , Estresse Oxidativo , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Alarminas/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Infarto Encefálico/complicações , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , AVC Isquêmico/complicações , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Extratos de Tecidos , Receptores Toll-Like/metabolismoRESUMO
Acute liver ischaemia-reperfusion injury (IRI), commonly encountered during liver resection and transplantation surgery, is strongly associated with unfavourable clinical outcome. However, a prompt and accurate diagnosis and the treatment of this entity remain formidable challenges. This study tested the hypothesis that 31 P-magnetic resonance spectroscopy (31 P-MRS) findings could provide reliable living images to accurately identify the degree of acute liver IRI and melatonin-pretreated mitochondria was an innovative treatment for protecting the liver from IRI in rat. Adult male SD rats were categorized into group 1 (sham-operated control), group 2 (IRI only) and group 3 (IRI + melatonin [ie mitochondrial donor rat received intraperitoneal administration of melatonin] pretreated mitochondria [10 mg/per rat by portal vein]). By the end of study period at 72 hours, 31 P-MRS showed that, as compared with group 1, the hepatic levels of ATP and NADH were significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1. The liver protein expressions of mitochondrial-electron-transport-chain complexes and mitochondrial integrity exhibited an identical pattern to 31 P-MRS finding. The protein expressions of oxidative stress, inflammatory, cellular stress signalling and mitochondrial-damaged biomarkers displayed an opposite finding of 31 P-MRS, whereas the protein expressions of antioxidants were significantly progressively increased from groups 1 to 3. Microscopic findings showed that the fibrotic area/liver injury score and inflammatory and DNA-damaged biomarkers exhibited an identical pattern of cellular stress signalling. Melatonin-pretreated mitochondria effectively protected liver against IRI and 31 P-MRS was a reliable tool for measuring the mitochondrial/ATP consumption in living animals.
Assuntos
Fígado/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismoRESUMO
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transdução de SinaisRESUMO
Bile acids facilitate nutrient absorption and are endogenous ligands for nuclear receptors that regulate lipid and energy metabolism. The brain-gut-liver axis plays an essential role in maintaining overall glucose, bile acid, and immune homeostasis. Fasting and feeding transitions alter nutrient content in the gut, which influences bile acid composition and pool size. In turn, bile acid signaling controls lipid and glucose use and protection against inflammation. Altered bile acid metabolism resulting from gene mutations, high-fat diets, alcohol, or circadian disruption can contribute to cholestatic and inflammatory diseases, diabetes, and obesity. Bile acids and their derivatives are valuable therapeutic agents for treating these inflammatory metabolic diseases.
Assuntos
Ácidos e Sais Biliares/metabolismo , Animais , Microbioma Gastrointestinal , Glucose/metabolismo , Homeostase , Humanos , Transdução de Sinais/fisiologiaRESUMO
Activation of the nuclear bile acid receptor farnesoid X receptor (FXR) protects against hepatic inflammation and injury, while Takeda G protein-coupled receptor 5 (TGR5) promotes adipose tissue browning and energy metabolism. Here, we examined the physiological and metabolic effects of the deficiency of these two bile acid receptors on hepatic metabolism and injury in mice. Fxr/Tgr5 double knockout mice (DKO) were generated for metabolic phenotyping. Male DKO mice fed a chow diet had reduced liver lipid levels but increased serum cholesterol levels. Liver cholesterol 7α-hydroxylase (Cyp7a1) activity and sterol 12α-hydroxylase mRNA levels were induced, while ileum FXR target genes were suppressed in DKO mice compared to wild-type (WT) mice. Bile acid pool size was increased in DKO mice, with increased taurocholic acid and decreased tauromuricholic acids. RNA sequencing analysis of the liver transcriptome revealed that bile acid synthesis and fibrosis gene expression levels are increased in chow-fed DKO mice compared to WT mice and that the top regulated pathways are involved in steroid/cholesterol biosynthesis, liver cirrhosis, and connective tissue disease. Cholestyramine treatment further induced Cyp7a1 mRNA and protein in DKO mice and increased bile acid pool size, while cholic acid also induced Cyp7a1 in DKO mice, suggesting impaired bile acid feedback regulation. A Western diet containing 0.2% cholesterol increased oxidative stress and markers of liver fibrosis but not hepatic steatosis in DKO mice. Conclusion: FXR and TGR5 play critical roles in protecting the liver from inflammation and fibrosis, and deficiency of both of these bile acid receptors in mice increased cholic acid synthesis and the bile acid pool, liver fibrosis, and inflammation; FXR and TGR5 DKO mice may be a model for liver fibrosis.
Assuntos
Colesterol 7-alfa-Hidroxilase/genética , Cirrose Hepática/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Acoplados a Proteínas G/genética , Animais , Ácidos e Sais Biliares/metabolismo , Biópsia por Agulha , Ácido Cólico/metabolismo , Dieta Ocidental , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genéticaRESUMO
This study tested the hypothesis that MMP-9-/-tPA-/- double knock out (i.e., MTDKO) plays a crucial role in the prognostic outcome after acute myocardial infarction (AMI by ligation of left-coronary-artery) in MTDKO mouse. Animals were categorized into sham-operated controls in MTDKO animals (group 1) and in wild type (B6: group 2), AMI-MTDKO (group 3) and AMI-B6 (group 4) animals. They were euthanized, and the ischemic myocardium was harvested, by day 60 post AMI. The mortality rate was significantly higher in group 3 than in other groups and significantly higher in group 4 than in groups 1/2, but it showed no difference in the latter two groups (all p < 0.01). By day 28, the left-ventricular (LV) ejection fraction displayed an opposite pattern, whereas by day 60, the gross anatomic infarct size displayed an identical pattern of mortality among the four groups (all p < 0.001). The ratio of heart weight to tibial length and the lung injury score exhibited an identical pattern of mortality (p < 0.01). The protein expressions of apoptosis (mitochondrial-Bax/cleaved-caspase3/cleaved-PARP), fibrosis (Smad3/T-GF-ß), oxidative stress (NOX-1/NOX-2/oxidized-protein), inflammation (MMPs2,9/TNF-α/p-NF-κB), heart failure/pressure overload (BNP/ß-MHC) and mitochondrial/DNA damage (cytosolic-cytochrome-C/γ-H2AX) biomarkers displayed identical patterns, whereas the angiogenesis markers (small vessel number/CD31+cells in LV myocardium) displayed opposite patterns of mortality among the groups (all p < 0.0001). The microscopic findings of fibrotic/collagen deposition/infarct areas and inflammatory cell infiltration of LV myocardium were similar to the mortality among the four groups (all p < 0.0001). MTDKO strongly predicted unfavorable prognostic outcome after AMI.
Assuntos
Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 9 da Matriz/genética , Infarto do Miocárdio/fisiopatologia , Antígeno Polipeptídico Tecidual/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Mortalidade , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Tamanho do Órgão , Prognóstico , Volume SistólicoRESUMO
This study tested whether circulatory endothelial progenitor cells (EPCs) derived from peripheral arterial occlusive disease (PAOD) patients after receiving combined autologous CD34+ cell and hyperbaric oxygen (HBO) therapy (defined as rejuvenated EPCs) would salvage nude mouse limbs against critical limb ischemia (CLI). Adult-male nude mice (n = 40) were equally categorized into group 1 (sham-operated control), group 2 (CLI), group 3 (CLI-EPCs (6 × 105) derived from PAOD patient's circulatory blood prior to CD34+ cell and HBO treatment (EPCPr-T) by intramuscular injection at 3 h after CLI induction) and group 4 (CLI-EPCs (6 × 105) derived from PAOD patient's circulatory blood after CD34+ cell and HBO treatment (EPCAf-T) by the identical injection method). By 2, 7 and 14 days after the CLI procedure, the ischemic to normal blood flow (INBF) ratio was highest in group 1, lowest in group 2 and significantly lower in group 4 than in group 3 (p < 0.0001). The protein levels of endothelial functional integrity (CD31/von Willebrand factor (vWF)/endothelial nitric-oxide synthase (eNOS)) expressed a similar pattern to that of INBF. In contrast, apoptotic/mitochondrial-damaged (mitochondrial-Bax/caspase-3/PARP/cytosolic-cytochrome-C) biomarkers and fibrosis (Smad3/TGF-ß) exhibited an opposite pattern, whereas the protein expressions of anti-fibrosis (Smad1/5 and BMP-2) and mitochondrial integrity (mitochondrial-cytochrome-C) showed an identical pattern of INBF (all p < 0.0001). The protein expressions of angiogenesis biomarkers (VEGF/SDF-1α/HIF-1α) were progressively increased from groups 1 to 3 (all p < 0.0010). The number of small vessels and endothelial cell surface markers (CD31+/vWF+) in the CLI area displayed an identical pattern of INBF (all p < 0.0001). CLI automatic amputation was higher in group 2 than in other groups (all p < 0.001). In conclusion, EPCs from HBO-C34+ cell therapy significantly restored the blood flow and salvaged the CLI in nude mice.
Assuntos
Antígenos CD34/metabolismo , Arteriopatias Oclusivas/terapia , Células Progenitoras Endoteliais/transplante , Oxigenoterapia Hiperbárica/métodos , Isquemia/terapia , Doença Arterial Periférica/terapia , Animais , Arteriopatias Oclusivas/sangue , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Humanos , Injeções Intramusculares , Masculino , Camundongos , Camundongos Nus , Neovascularização Fisiológica , Doença Arterial Periférica/sangue , Fluxo Sanguíneo Regional , Transplante de Células-Tronco , Transplante Autólogo , Resultado do TratamentoRESUMO
Bile acids activate farnesoid X receptor (FXR) and G protein-coupled bile acid receptor-1 (aka Takeda G protein-coupled receptor-5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine-restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP-1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX-induced and lithocholic acid-producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX-induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP-1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice. CONCLUSION: This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP-1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).
Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares/farmacologia , Sensibilidade e Especificidade , Transdução de SinaisRESUMO
We evaluated the ability of extracorporeal shock wave (ECSW)-assisted melatonin (Mel) therapy to offer an additional benefit for alleviating the neuropathic pain (NP) in rats. Left sciatic nerve was subjected to chronic constriction injury (CCI) to induce NP. Animals (n = 30) were randomized into group 1 (sham-operated control), group 2 (CCI only), group 3 (CCI + ECSW), group 4 (CCI + Mel) and group 5 (CCI + ECSW + Mel). By days 15, 22 and 29 after CCI, the thermal paw withdrawal latency (TPWL) and mechanical paw withdrawal threshold (MPWT) were highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but they showed no difference between the later two groups (all p < 0.0001). The protein expressions of inflammatory (TNF-α, NF-κB, MMP-9, IL-1ß), oxidative-stress (NOXs-1, -2, -4, oxidized protein), apoptotic (cleaved-caspase3, cleaved-PARP), DNA/mitochondrial-damaged (γ-H2AX/cytosolic-cytochrome C), microglia/astrocyte activation (ox42/GFAP), and MAPKs [phosphorylated (p)-p38, p-JNK, p-ERK] biomarkers in dorsal root ganglia neurons (DRGs) and in spinal dorsal horn were exhibited an opposite pattern of TPWL among the five groups (all p < 0.0001). Additionally, protein expressions of Nav.1.3, Nav.1.8 and Nav.1.9 in sciatic nerve exhibited an identical pattern to inflammation among the five groups (all p < 0.0001). The numbers of cellular expressions of MAPKs (p-ERK1/2+/peripherin + cells, p-ERK1/2+/NF200 + cells and p-JNK+/peripherin + cells, p-JNK+/NF200 + cells) and voltage-gated sodium channels (Nav.1.8+/peripherin + cells, Nav.1.8+/NF200 + cells, Nav.1.9+/peripherin + cells, Nav.1.9+/NF200 + cells) in small and large DRGs displayed an identical pattern to inflammation among the five groups (all p < 0.0001). In conclusion, the synergistic effect of combined ECSW-Mel therapy is superior to either one alone for long-term improvement of mononeuropathic pain-induced by CCI in rats.