Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 93(4): 655-667, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511844

RESUMO

OBJECTIVE: Small-fiber neuropathy (SFN) is characterized by neuropathic pain due to degeneration of small-diameter nerves in the skin. Given that brain reorganization occurs following chronic neuropathic pain, this study investigated the structural and functional basis of pain-related brain changes after skin nerve degeneration. METHODS: Diffusion-weighted and resting-state functional MRI data were acquired from 53 pathologically confirmed SFN patients, and the structural and functional connectivity of the pain-related network was assessed using network-based statistic (NBS) analysis. RESULTS: Compared with age- and sex-matched controls, the SFN patients exhibited a robust and global reduction of functional connectivity, mainly across the limbic and somatosensory systems. Furthermore, lower functional connectivity was associated with skin nerve degeneration measured by reduced intraepidermal nerve fiber density and better therapeutic response to anti-neuralgia medications, particularly for the connectivity between the insula and the limbic areas including the anterior and middle cingulate cortices. Similar to the patterns of functional connectivity changes, the structural connectivity was robustly reduced among the limbic and somatosensory areas, and the cognition-integration areas including the inferior parietal lobule. There was shared reduction of structural and functional connectivity among the limbic, somatosensory, striatal, and cognition-integration systems: (1) between the middle cingulate cortex and inferior parietal lobule and (2) between the thalamus and putamen. These observations indicate the structural basis underlying altered functional connectivity in SFN. INTERPRETATION: Our findings provide imaging evidence linking structural and functional brain dysconnectivity to sensory deafferentation caused by peripheral nerve degeneration and therapeutic responses for neuropathic pain in SFN. ANN NEUROL 2023;93:655-667.


Assuntos
Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Imageamento por Ressonância Magnética/métodos , Neuralgia/diagnóstico por imagem , Neuralgia/tratamento farmacológico , Encéfalo , Giro do Cíngulo , Neuropatia de Pequenas Fibras/tratamento farmacológico , Degeneração Neural
2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397037

RESUMO

This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Animais , Neuroproteção , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Modelos Animais
3.
BMC Med Imaging ; 23(1): 44, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973775

RESUMO

BACKGROUND: Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). METHODS: Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. RESULTS: Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. CONCLUSION: The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Crânio , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047299

RESUMO

Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.


Assuntos
Anti-Inflamatórios não Esteroides , Encefalopatias , Neuroproteção , Fármacos Neuroprotetores , Quercetina , Quercetina/farmacologia , Quercetina/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/prevenção & controle , Material Particulado/toxicidade , Encefalopatias/induzido quimicamente , Encefalopatias/prevenção & controle , Animais , Camundongos , Ratos , Humanos
5.
Eur J Neurol ; 29(5): 1465-1476, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35020255

RESUMO

BACKGROUND AND PURPOSE: Sensory symptoms, especially neuropathic pain, are common in polyneuropathy. Conventional diagnostic tools can evaluate structural or functional impairment of nerves but cannot reveal mechanisms of neuropathic pain. Changes in the brain after polyneuropathy may play roles in the genesis of neuropathic pain. METHODS: This cross-sectional study investigated changes of cortical excitability within left primary motor cortex (M1) by measuring resting motor thresholds, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and afferent inhibition between polyneuropathy patients and controls, and investigated the correlates of these parameters with neuropathic pain and M1 structural and functional connectivity assessed by diffusion tractography imaging and functional magnetic resonance imaging. RESULTS: Thirty-three painful and 15 nonpainful neuropathic patients and 21 controls were enrolled. There were no differences in intraepidermal nerve fiber density, nerve conduction studies, thermal thresholds, or autonomic functional tests between patients with and without neuropathic pain. Compared to controls, neuropathic patients exhibited similar resting motor thresholds or afferent inhibition, but attenuated SICI and augmented ICF, especially in painful patients. Changes of intracortical excitability in neuropathic patients were correlated with intensities of neuropathic pain, and different presentations of SICI and ICF were noted between patients with and without thermal paresthesia. Additionally, short-latency afferent inhibition at an interstimulus interval of 20 ms was associated with structural connectivity of left M1 with brain areas associated with pain perception. CONCLUSIONS: Maladaptive cortical excitability with altered structural connectivity in left M1 developed after peripheral nerve degeneration and was associated with neuropathic pain and sensory symptoms in polyneuropathy.


Assuntos
Excitabilidade Cortical , Neuralgia , Polineuropatias , Estudos Transversais , Potencial Evocado Motor/fisiologia , Humanos , Inibição Neural/fisiologia , Neuralgia/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos
6.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236430

RESUMO

With the development of active noise cancellation (ANC) technology, ANC has been used to mitigate the effects of environmental noise on audiometric results. However, objective evaluation methods supporting the accuracy of audiometry for ANC exposure to different levels of noise have not been reported. Accordingly, the audio characteristics of three different ANC headphone models were quantified under different noise conditions and the feasibility of ANC in noisy environments was investigated. Steady (pink noise) and non-steady noise (cafeteria babble noise) were used to simulate noisy environments. We compared the integrity of pure-tone signals obtained from three different ANC headphone models after processing under different noise scenarios and analyzed the degree of ANC signal correlation based on the Pearson correlation coefficient compared to pure-tone signals in quiet. The objective signal correlation results were compared with audiometric screening results to confirm the correspondence. Results revealed that ANC helped mitigate the effects of environmental noise on the measured signal and the combined ANC headset model retained the highest signal integrity. The degree of signal correlation was used as a confidence indicator for the accuracy of hearing screening in noise results. It was found that the ANC technique can be further improved for more complex noisy environments.


Assuntos
Programas de Rastreamento , Ruído , Audiometria de Tons Puros/métodos , Estudos de Viabilidade , Audição
7.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232980

RESUMO

Oxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent. However, the mechanism by which resveratrol achieves these beneficial effects in SH-SY5Y cells exposed to OGD-induced inflammation and oxidative stress in a 3D gelatin scaffold remains unclear. Therefore, in the present study, we investigated the effect of resveratrol in 3D gelatin scaffold cells to understand its neuroprotective effects on NF-κB signaling, NLRP3 inflammasome, and oxidative stress under OGD conditions. Here, we show that resveratrol improves the expression levels of cell viability, inflammatory cytokines (TNF-α, IL-1ß, and IL-18), NF-κB signaling, and NLRP3 inflammasome, that OGD increases. In addition, resveratrol rescued oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf2), and Nrf2 downstream antioxidant target genes (e.g., SOD, Gpx GSH, catalase, and HO-1). Treatment with resveratrol can significantly normalize OGD-induced changes in SH-SY5Y cell inflammation, oxidative stress, and oxidative defense gene expression; however, these resveratrol protective effects are affected by AMPK antagonists (Compounds C) blocking. These findings improve our understanding of the mechanism of the AMPK-dependent protective effect of resveratrol under 3D OGD-induced inflammation and oxidative stress-mediated cerebral ischemic stroke conditions.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Gelatina/farmacologia , Glucose/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-18/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Oxigênio/metabolismo , Resveratrol/metabolismo , Resveratrol/farmacologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Eur J Neurol ; 28(3): 982-991, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369810

RESUMO

BACKGROUND AND PURPOSE: Disease-modifying therapies provide new horizons for hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) to slow neuropathic progression. Initiating treatment at the earliest time requires biomarkers reflecting both small- and large-fiber degeneration in carriers. METHODS: This study included examinations of pathology (intraepidermal nerve fiber [IENF] density), physiology (nerve conduction studies, autonomic function test, and nerve excitability), and psychophysics (thermal thresholds) in carriers to compare to healthy controls and asymptomatic diabetic patients. RESULTS: There were 43 carriers (44.2 ± 11.4 years, p.Ala117Ser in 42 carriers), 43 controls (43.4 ± 12.7 years) including 26 noncarrier families, and 50 asymptomatic diabetic patients (58.1 ± 9.5 years). Carriers had lower IENF densities than controls and similar densities as diabetic patients. Median nerve conduction parameters, especially distal motor latency, were the most frequent neurophysiological abnormality in carriers, could differentiate carriers from controls and diabetic patients, were correlated with IENF densities in carriers but not in controls and diabetic patients, and were correlated with nerve excitability parameters in carriers but not in controls. Fifteen carriers (34.9%) with electrophysiological evidence of median nerve entrapment at the wrist had lower IENF densities and more abnormal conduction parameters than carriers without. We defined nerve dysfunction index-the ratio of median distal motor latency to IENF density-which differentiated carriers from controls. CONCLUSIONS: In late-onset ATTRv-PN carriers with predominant p.Ala117Ser, median conduction parameters were the most common neurophysiological abnormalities and served as surrogate signatures of small- and large-fiber impairment. Combination of median distal motor latency and IENF density can reflect early neuropathy in carriers.


Assuntos
Neuropatias Amiloides Familiares , Polineuropatias , Neuropatias Amiloides Familiares/genética , Humanos , Condução Nervosa , Polineuropatias/genética , Pré-Albumina/genética
9.
Sensors (Basel) ; 21(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770479

RESUMO

Ischemic stroke is one of the leading causes of death among the aged population in the world. Experimental stroke models with rodents play a fundamental role in the investigation of the mechanism and impairment of cerebral ischemia. For its celerity and veracity, the 2,3,5-triphenyltetrazolium chloride (TTC) staining of rat brains has been extensively adopted to visualize the infarction, which is subsequently photographed for further processing. Two important tasks are to segment the brain regions and to compute the midline that separates the brain. This paper investigates automatic brain extraction and hemisphere segmentation algorithms in camera-based TTC-stained rat images. For rat brain extraction, a saliency region detection scheme on a superpixel image is exploited to extract the brain regions from the raw complicated image. Subsequently, the initial brain slices are refined using a parametric deformable model associated with color image transformation. For rat hemisphere segmentation, open curve evolution guided by the gradient vector flow in a medial subimage is developed to compute the midline. A wide variety of TTC-stained rat brain images captured by a smartphone were produced and utilized to evaluate the proposed segmentation frameworks. Experimental results on the segmentation of rat brains and cerebral hemispheres indicated that the developed schemes achieved high accuracy with average Dice scores of 92.33% and 97.15%, respectively. The established segmentation algorithms are believed to be potential and beneficial to facilitate experimental stroke study with TTC-stained rat brain images.


Assuntos
Isquemia Encefálica , Cérebro , Acidente Vascular Cerebral , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Ratos , Acidente Vascular Cerebral/diagnóstico por imagem , Sais de Tetrazólio
10.
Stroke ; 50(10): 2851-2857, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500556

RESUMO

Background and Purpose- Central poststroke pain (CPSP) is a disabling condition in stroke patients, and evidence suggests that altered corticospinal and motor intracortical excitability occurs in neuropathic pain. The objective of this study was to investigate changes in motor cortex excitability and sensorimotor interaction and their correlates with clinical manifestations and alterations in somatosensory systems in CPSP patients. Methods- Fourteen patients with CPSP but no motor weakness were compared with age- and sex-matched healthy controls for motor cortex excitability and sensorimotor interaction assessed by transcranial magnetic stimulation to measure resting motor thresholds, short-interval intracortical inhibition, intracortical facilitation, and afferent inhibitions. The sensory pathway was evaluated by quantitative sensory testing, contact heat evoked potential, and somatosensory evoked potentials. Clinical pain and quality of life were assessed with validated tools. Results- The duration of CPSP was 3.3±3.0 years (ranging 0.5-10 years), and pain significantly impaired quality of life. Compared with the unaffected hemisphere, the stroke hemisphere had higher thermal thresholds, lower contact heat evoked potential amplitudes, and prolonged cortical somatosensory evoked potential latencies. There was no difference in resting motor thresholds between the stroke and unaffected hemisphere or between patients and controls. CPSP patients had a reduction in short-interval intracortical inhibition in the stroke hemisphere compared with that in the unaffected hemispheres of patients and controls. No changes were noted in afferent inhibitions between the stroke and unaffected hemispheres. The short-interval intracortical inhibition of the stroke hemisphere was negatively correlated with self-rated health on a visual analog scale and positively correlated with cortical somatosensory evoked potential latencies. Conclusions- CPSP patients with intact corticospinal tracts showed reduced motor intracortical inhibition in the stroke hemisphere, suggesting defective gamma-aminobutyric acid-ergic inhibition. This disinhibition was associated with impaired quality of life and was related to dorsal column-medial lemniscus pathway dysfunction.


Assuntos
Córtex Motor/fisiopatologia , Inibição Neural/fisiologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Acidente Vascular Cerebral/complicações , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/fisiopatologia , Córtex Somatossensorial/fisiopatologia
11.
Exp Cell Res ; 370(2): 312-321, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29964054

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated nuclear receptors known to regulate many crucial physiological and pathological conditions. Indeed, altered PPARγ transcriptional activity contributes to metabolic syndromes (obesity and hyperglycemia associated with type 2 diabetes mellitus), stroke and neurodegenerative diseases. Various studies suggest that PPARγ agonists influence neuronal deficits in Alzheimer's Disease (AD) patients and rodent models of AD. Expression of amyloid-beta (Aß), a neuropathological marker associated with the pathogenesis of AD neuronal impairment, is inversely correlated with the activation of PPARγ-dependent neuroprotective responses. Nevertheless, molecular mechanisms by which the effects of PPARγ agonists in AD remain to be clarified. Here, we explore the PPARγ signaling pathways and networks that protect against Aß-induced endoplasmic reticulum (ER) stress (e.g., caspase 4, Bip, CHOP, ASK1 and ER calcium), cell death (e.g., viability and cytochrome c) and mitochondrial deficiency (e.g., maximal respiratory function, COX activity, and mitochondrial membrane potential) events in the human neural stem cells (hNSCs) treated with Aß. Co-treatment with GW9662 (an antagonist of PPARγ) effectively blocked these protective effects by rosiglitazone, providing strong evidence that PPARγ-dependent signaling rescues hNSCs from Aß-mediated toxicity. Together, our data suggest activation of PPARγ pathway might be critical to protecting against AD-related ER stress, ER disequilibrium and mitochondrial deficiency. These findings also improve our understanding of the role of PPARγ in hNSCs, and may aid in the development and implementation of new therapeutic strategies for the treatment of AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , Rosiglitazona/farmacologia , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo
12.
Dev Dyn ; 247(12): 1264-1275, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358936

RESUMO

BACKGROUND: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. RESULTS: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. CONCLUSIONS: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264-1275, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/citologia , Neuroglia/citologia , Neurônios/citologia , PPAR alfa/fisiologia , Células-Tronco/citologia , Animais , Sistema Nervoso Central/embriologia , Neurogênese , PPAR alfa/deficiência , Peixe-Zebra/embriologia
13.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 463-474, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27979767

RESUMO

Neural crest cells are multipotent progenitors that migrate extensively and differentiate into numerous derivatives. The developmental plasticity and migratory ability of neural crest cells render them an attractive model for studying numerous aspects of cell progression. We observed that zebrafish rgs2 was expressed in neural crest cells. Disrupting Rgs2 expression by using a dominant negative rgs2 construct or rgs2 morpholinos reduced GTPase-activating protein activity, induced the formation of neural crest progenitors, increased the proliferation of nonectomesenchymal neural crest cells, and inhibited the formation of ectomesenchymal neural crest derivatives. The transcription of pparda (which encodes Pparδ, a Wnt-activated transcription factor) was upregulated in Rgs2-deficient embryos, and Pparδ inhibition using a selective antagonist in the Rgs2-deficient embryos repaired neural crest defects. Our results clarify the mechanism through which the Rgs2-Pparδ cascade regulates neural crest development; specifically, Pparδ directly binds to the promoter and upregulates the transcription of the neural crest specifier sox10. This study reveals a unique regulatory mechanism, the Rgs2-Pparδ-Sox10 signaling cascade, and defines a key molecular regulator, Rgs2, in neural crest development.


Assuntos
Crista Neural/metabolismo , Neurogênese/genética , PPAR delta/genética , Proteínas RGS/genética , Fatores de Transcrição SOXE/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/crescimento & desenvolvimento , PPAR delta/metabolismo , Regiões Promotoras Genéticas , Proteínas RGS/metabolismo , Fatores de Transcrição SOXE/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ativação Transcricional , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
14.
Neuroimage ; 181: 1-15, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29966717

RESUMO

Increasing contextual interference (CI) during practice benefits learning, making it a desirable difficulty. For example, interleaved practice (IP) of motor sequences is generally more difficult than repetitive practice (RP) during practice but leads to better learning. Here we investigated whether CI in practice modulated resting-state functional connectivity during consolidation. 26 healthy adults (11 men/15 women, age = 23.3 ±â€¯1.3 years) practiced two sets of three sequences in an IP or RP condition over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, functional magnetic resonance imaging (fMRI) data were acquired during practice and also in a resting state immediately after practice. The resting-state fMRI data were processed using independent component analysis (ICA) followed by functional connectivity analysis, showing that IP on Day 1 led to greater resting connectivity than RP between the left premotor cortex and left dorsolateral prefrontal cortex (DLPFC), bilateral posterior cingulate cortices, and bilateral inferior parietal lobules. Moreover, greater resting connectivity after IP than RP on Day 1, between the left premotor cortex and the hippocampus, amygdala, putamen, and thalamus on the right, and the cerebellum, was associated with better learning following IP. Mediation analysis further showed that the association between enhanced resting premotor-hippocampal connectivity on Day 1 and better retention performance following IP was mediated by greater task-related functional activation during IP on Day 2. Our findings suggest that the benefit of CI to motor learning is likely through enhanced resting premotor connectivity during the early phase of consolidation.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Consolidação da Memória/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Aprendizagem Seriada/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Prática Psicológica , Descanso , Retenção Psicológica/fisiologia , Adulto Jovem
15.
Stem Cells ; 35(4): 1003-1014, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27790787

RESUMO

Neural crest progenitor cells, which give rise to many ectodermal and mesodermal derivatives, must maintain a delicate balance of apoptosis and proliferation for their final tissue contributions. Here we show that zebrafish bmp5 is expressed in neural crest progenitor cells and that it activates the Smad and Erk signaling pathways to regulate cell survival and proliferation, respectively. Loss-of-function analysis showed that Bmp5 was required for cell survival and this response is mediated by the Smad-Msxb signaling cascade. However, the Bmp5-Smad-Msxb signaling pathway had no effect on cell proliferation. In contrast, Bmp5 was sufficient to induce cell proliferation through the Mek-Erk-Id3 signaling cascade, whereas disruption of this signaling cascade had no effect on cell survival. Taken together, our results demonstrate an important regulatory mechanism for bone morphogenic protein-initiated signal transduction underlying the formation of neural crest progenitors. Stem Cells 2017;35:1003-1014.


Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose , Proteína Morfogenética Óssea 5 , Proliferação de Células , Sobrevivência Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Smad/metabolismo , Peixe-Zebra/embriologia
16.
Exp Cell Res ; 359(2): 367-373, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821394

RESUMO

Advanced glycosylation end products (AGEs) formation is correlated with the pathogenesis of diabetic neuronal damage, but its links with oxidative stress are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). Once activated, AMPK regulates many pathways central to metabolism and energy balance including, glucose uptake, glycolysis and fatty acid oxidation. AMPK is also present in neurons, but its role remains unclear. Here, we show that AGE exposure decreases cell viability of human neural stem cells (hNSCs), and that the AMPK agonist metformin reverses this effect, via AMPK-dependent downregulation of RAGE levels. Importantly, hNSCs co-treated with metformin were significantly rescued from AGE-induced oxidative stress, as reflected by the normalization in levels of reactive oxygen species. In addition, compared to AGE-treated hNSCs, metformin co-treatment significantly reversed the activity and mRNA transcript level changes of SOD1/2 and Gpx. Furthermore, hNSCs exposed to AGEs had significantly lower mRNA levels among other components of normal cellular oxidative defenses (GSH, Catalase and HO-1), which were all rescued by co-treatment with metformin. This metformin-mediated protective effect on hNSCs for of both oxidative stress and oxidative defense genes by co-treatment with metformin was blocked by the addition of an AMPK antagonist (Compound C). These findings unveil the protective role of AMPK-dependent metformin signaling during AGE mediated oxidative stress in hNSCs, and suggests patients undergoing AGE-mediated neurodegeneration may benefit from the novel therapeutic use of metformin.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Produtos Finais de Glicação Avançada/farmacologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Catalase/genética , Catalase/metabolismo , Proliferação de Células , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
17.
Exp Cell Res ; 352(1): 75-83, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159472

RESUMO

A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1ß, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Produtos Finais de Glicação Avançada/efeitos adversos , Hipoglicemiantes/farmacologia , Inflamação/prevenção & controle , Metformina/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
18.
Dev Genes Evol ; 227(3): 219-230, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28154937

RESUMO

The forkhead box subclass O (FoxO) family of proteins is a group of highly evolutionary conserved transcription factors that regulate various cellular processes and embryonic development. Dysregulated expressions of FOXO genes have been identified in numerous tumors and genetic disorders. The expression of FOXO/Foxo, particularly FOXO4/Foxo4 and FOXO6/Foxo6, in the developing nervous system has not been fully characterized. Here, we identified zebrafish foxo4, foxo6a, and foxo6b homologs and demonstrated that all three genes were expressed in the developing nervous system. foxo4, foxo6a, and foxo6b displayed ubiquitous expression in the brain and later in distinct brain tissues. In addition, these three genes were expressed in different retinal layers in a time-dependent manner. Furthermore, the mRNA expression of all three genes was significantly downregulated after treatment with a selective PI3-kinase (PI3K) inhibitor, LY294002. Our results suggest that foxo4, foxo6a, and foxo6b play important roles in the developing brain and retina and that the transcriptional levels of these genes are regulated by PI3-kinase signaling.


Assuntos
Encéfalo/metabolismo , Fatores de Transcrição Forkhead/genética , Retina/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Inibidores de Fosfoinositídeo-3 Quinase , Filogenia , Alinhamento de Sequência , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/metabolismo
19.
Exp Cell Res ; 347(2): 322-31, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554603

RESUMO

Alzheimer's disease (AD) is the general consequence of dementia and is diagnostic neuropathology by the cumulation of amyloid-beta (Aß) protein aggregates, which are thought to promote mitochondrial dysfunction processes leading to neurodegeneration. AMP-activated protein kinase (AMPK), a critical regulator of energy homeostasis and a major player in lipid and glucose metabolism, is potentially implied in the mitochondrial deficiency of AD. Metformin, one of the widespread used anti- metabolic disease drugs, use its actions in part by stimulation of AMPK. While the mechanisms of AD are well established, the neuronal roles for AMPK in AD are still not well understood. In the present study, human neural stem cells (hNSCs) exposed to Aß had significantly reduced cell viability, which correlated with decreased AMPK, neuroprotective genes (Bcl-2 and CREB) and mitochondria associated genes (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3/9 activity and cytosolic cytochrome c. Co-treatment with metformin distinct abolished the Aß-caused actions in hNSCs. Metformin also significantly rescued hNSCs from Aß-mediated mitochondrial deficiency (lower D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Importantly, co-treatment with metformin significantly restored fragmented mitochondria to almost normal morphology in the hNSCs with Aß. These findings extend our understanding of the central role of AMPK in Aß-related neuronal impairment. Thus, a better understanding of AMPK might assist in both the recognition of its critical effects and the implementation of new therapeutic strategies in the treatment of AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/farmacologia , Metformina/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
20.
Dev Biol ; 397(1): 116-28, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446033

RESUMO

The study of molecular regulation in neural development provides information to understand how diverse neural cells are generated. It also helps to establish therapeutic strategies for the treatment of neural degenerative disorders and brain tumors. The Hairy/E(spl) family members are potential targets of Notch signaling, which is fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. In this study, we isolated a zebrafish homolog of Hairy/E(spl), her2, and showed that this gene is expressed in neural progenitor cells and in the developing nervous system. The expression of her2 required Notch activation, as revealed by a Notch-defective mutant and a chemical inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). The endogenous expression of Her2 was altered by both overexpression and morpholino-knockdown approaches, and the results demonstrated that Her2 was both necessary and sufficient to promote the proliferation of neural progenitors by inhibiting the transcription of the cell cycle inhibitors cdkn1a, cdkn1ba, and cdkn1bb. Her2 knockdown caused premature neuronal differentiation, which indicates that Her2 is essential for inhibiting neuronal differentiation. At a later stage of neural development, Her2 could induce glial differentiation. The overexpression of Her2 constructs lacking the bHLH or WRPW domain phenocopied the effect of the morpholino knockdown, demonstrating the essential function of these two domains and further confirming the knockdown specificity. In conclusion, our data reveal that Her2 promotes progenitor proliferation and maintains progenitor characteristics by inhibiting neuronal differentiation. Together, these two mechanisms ensure the proper development of the neural progenitor cell pool.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Receptor ErbB-2/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Dipeptídeos/química , Perfilação da Expressão Gênica , Genes Dominantes , Receptor ErbB-2/genética , Transdução de Sinais , Fatores de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA